

Novel Changes in Bundled Payments Cleveland Clinic Experience

Joseph Cacchione, M.D. Chairman, HVI Strategic Operations

Background

- Healthcare costs account for 17.2% of the GDP*
- Traditional payment methods are not associated with better patient outcomes**
- Alternative payment models are being explored that promote quality, efficiency, and effectiveness in health care delivery

* The Commonwealth Fund, Issues in International Health Policy, May 2012 ** HealthAffairs, Health Policy Briefs, October 2012

The Value Equation

Value = Quality + Patient Experience + Patient Reported Outcomes* Event + Episode + Ongoing Care

Cost Reduction 5-10% per case

Cost Avoidance 10-15% of cases

Value Analysis: Predictive Model powered by Truven

*Return to work and quality of life

Bundled Payments

- Bundled payments employ a single payment for all services related to a treatment or condition
- Goals:
 - Target a common procedure with variation in costs and outcomes
 - Cover essential clinical items and services
 - Provide a financial incentive to reduce inappropriate care
 - Yield a "win-win-win" outcome for payers, providers, and patients
 - Be simple enough to administer effectively
 - Maintain or improve quality of care
 - Appear seamless to policy holders
 - Be scalable and sustainable

The Problem

- Episodes of care should be risk adjusted*
- Traditional risk adjustment approaches rely on healthcare claims data**
- Primary Objectives:
 - Integrate payer claims data with provider clinical data for development of the LPR
 - Demonstrate the application of the LPR for risk adjusting bundled payments
- Secondary Objectives:
 - Determine pre-procedural risk factors for high episode costs
 - Examine the procedures and services in the PCI episodes that lead to high episode costs
 - * http://aspe.hhs.gov/health/reports/09/mcperform/report.pdf
 - **http://www.hci3.org/sites/default/files/files/Severity%20Adjustment%20Fact %20Sheet.pdf

Limitations of Claims Data

What we see is not always what we get!

Relevant Acute Care Cost Price Class Statistics

Price Class	# of Patients	Median Price
Low	216	\$10,527
Medium	82	\$16,232
High	5	\$35,411

Stakeholders

- Partnership:
 - Cleveland Clinic Foundation (CCF) and HealthCore/Anthem (HC/ANTM)
 - Executed Non-Disclosure Agreement (NDA), Business Associate Agreement (BAA), and Data Transfer and Collaboration Agreement (DTCA) in January 2013
 - Percutaneous Coronary Intervention (PCI) was selected for the research study
 - All parties agreed on study objectives and protocols
- Guiding Principles:
 - Protect patient privacy
 - Protect business interests of data sources
 - Protect integrity of research

Patients Reconciliation

Year of PCI Event	Total Unique Patients	Matched CCF & HCI	Percent Matched	Yet To Be Matched Cleveland Clinic (CCF)	Yet To Be Matched HealthCore (HCI)
2006	238		0%	238	
2007	204		0%	204	
2008	205	7	3%	184	14
2009	286	118	41%	75	93
2010	273	111	41%	89	73
2011	284	112	39%	98	74
2012	283	78	28%	145	60
Totals	1773	426	24%	1033	314

* Before Final Filtering for Age, Insurance Product, and Eligibility Periods

Bundle Grouper

- CCF grouped claims into PCI treatment episodes capturing utilization 30 days pre and 180 days post PCI surgery
- HC/ANTM received grouper output and replaced imputed costs with actual allowed amounts for use in research study

Bundle Grouper Process

1. Identify the trigger claim

- Use procedure and/or diagnosis code information

2. Determine services during the time window

- Time windows defined before and after trigger service

- Definition considers the relevance of timing of a patient's services

3. Identify unexpected outcomes

- Identifies inpatient admission for medical or surgical complication

LPR Development Process

Study Design and Population

- Retrospective observational study design
- Patients receiving PCI procedures at Cleveland Clinic Main Campus
- Patients ages 18 75 years old at time of PCI
- Study period: 1/1/2006 through 12/31/2012

Statistical Methodology

Modeling

- Variables associated with costs and deemed clinically relevant were considered
- A backward selection algorithm was used to choose the best fit model
- Cross validation was performed to avoid overfitting the data Cost as a Continuous Outcome
- Generalized linear models with a gamma distribution were used to predict costs

Cost as a Dichotomous Outcome

 Modeled using logistic regression to predict a patient having costs in the top 25 percentile

Predictive Model – Continuous Outcome (n=388)

Variables included	Effect direction
Main effects	
Age	÷
Elective PCI (vs. Emergent PCI)	4
Prior MI	Ŷ
Prior PCI	Ŷ
CAD presentation of STEMI	Ŷ
CAD presentation of NSTEMI	÷
Stress/imaging study - positive results	Ŷ
Interaction Terms	
Age^2	
BMI^2	
Age * BMI	
Age^2 * BMI	
Age^2 * BMI^2	
Age^2 * CAD presentation of NSTEMI	
Prior MI * Stress/imaging study - positive results	
Prior PCL * CAD presentation of STEMI	

Observation

Predictive Model – Dichotomous Outcome (n=388)

Model predicting "high costs" as the outcome (top quartile of costs)

Results Stratified by Elective vs. Non-elective

Emergent PCI (n = 183)

Variables included in fitted model	Effect direction
Independent Variables	
Age	1
BMI	Ŷ
Stress/imaging study - positive results	¢
Interaction Terms	
Age * BMI	
Age * BMI^2	
BMI^3	

AUC = 0.71

Elective PCI (n = 205)

Variables included	Effect
	direction
Independent Variables	
BMI	Ŷ
Family history of premature CAD	Ŷ
Prior MI	Ŷ
Beta blocker use within past 2 weeks	1
Interaction	
BMI * Prior MI	

AUC = 0.72

Limitations

- Small sample size and limited power in the integrated data, especially with stratifying by PCI status and treating cost as a dichotomous outcome
- Possible incomplete capture of Medicare costs in individuals 65 years and older
- Potential limitations in application to noncommercial and non-Cleveland Clinic patients
- Limited auditing of registry data sources

Challenges – Business

- Stakeholder alignment is key
- Many health systems are not ready from a technological perspective
- Trust between parties has to be established
- Understanding the data complexity and ability to integrate data is essential
- Development and implementation costs can be high
- The results can be transformational for the healthcare system

Challenges - Technical

- Interoperability challenges
- Lack of integration at data sources
- Non-standard codes / source level data quality issues
- One time data input into the LPR does not take into account any future system changes
- Issues with persisting data at the database level

Findings

- Clinical data and administrative healthcare data are limited by collection methods and clinical accuracy
- HC/ANTM's in-depth data quality assessment was valuable when utilizing clinical data for research purposes
- Integrating multiple data sources is complex
- Expectation management for timelines and budgets is essential
- Interoperability issues should be considered early in the project

Cleveland Clinic

Every life deserves world class care.