Public Key Infrastructure ENSPHERICS

Ed Bassett June 21, 2001

© 2001, Enspherics, Inc. All rights reserved

ENSPHERICS

... provides custom designed security solutions for a variety of clients who operate in high risk, high threat and high profile environments through responsive, specialized teams of talented technologists.

> © 2001, Enspherics, Inc. All rights reserved

as in "new economy" ...security for the way business gets done today.

> as in "applied science"...practical solutions that will protect your information right now.

as in "it's all we do"...pure and total focus on this complex, mission-critical area.

Outline

• Introduction

• Quick technology overview

- Digital signatures
- Digital certificates
- o PKI
- Why PKI?
 - Typical scenarios
- Got PKI?
 - Why it's easier than you think!

Business Drivers

- Market Forces
 - Legacy EDI technology focuses on static business relationships
 - E-commerce technology focuses on dynamic business transactions
 - Informal or no prior arrangements between parties
 - Digital signatures enable this type of transaction
 - Integrity often more important than privacy

Business Drivers (Cont.)

- Electronic transactions need assurance features analogous to paper transactions
 - Validation of content
 - Identity of sender
 - Non-repudiation
- Need forgery protection similar to paper documents
- "Original" is an irrelevant concept
- Public key encryption is the base technology

Assurance Spectrum

Creating a Digital Signature

Checking a Digital Signature

Digital Certificates

- Digital certificates add assurance
 - Trusted third party binds identity (e.g., Person's name) to a key pair
 - Provides recipients with confidence of signature authenticity
 - Various levels of assurance of "binding"

PKI Overview

- Public Key Infrastructure (PKI) is the set of supporting services that enable public key based security to be used on a wide scale
 - Certificate management technology
 - Interoperability standards
 - Legal support for digital signatures

PKI Overview (Cont.)

• Digital signatures provide

- Authentication of identity -- who sent the transaction
- Integrity of contents -- what was sent
- Non-repudiation -- cannot later deny sending transaction

• PKI provides

- Means of managing digital signature keys
- Third party "certification" of the binding between identity and keys

Why PKI? Typical Scenarios

- Occasional or one-time customer transactions
- Recurring customer transactions
- Internal workflow
- Business partner interaction

Occasional Transactions

- Scenario
 - Health care provider needs to verify source and content of records requests submitted by patients
- How PKI is used
 - Patients obtain certificates from public certificate issuers ahead of time
 - Patients present certificates to provider at the time a request is placed
 - Provider verifies the certificate to ensure it is signed by a trusted third party and that it has not been revoked
 - Patients fill out a request form and sign it using their private key
 - Provider verifies the signature using the certificate

Occasional Transactions (Cont.)

- Business Considerations
 - Similar to customer signature on paper request form
 - Digital signature used primarily to ascertain identity in case of dispute
 - Provider may accept certificates issued by a number of different issuers
 - Each must use identity verification procedures sufficient to benefit the provider in case of a dispute over the signature
 - No need for a prior exchange of credentials between the provider and patient

Recurring Transactions

• Scenario

- Insurance company has an established relationship with a health care provider
- Insurer needs to protect transactions such as claims, payments, web delivery status information
- How PKI is used
 - Insurer issues a "private label" certificate to provider
 - Certificates used by providers only for transactions with the insurer
 - Providers present certificate and use private key to sign documents submitted to the insurer

Recurring Transactions (Cont.)

- Business considerations
 - Digital signature assures insurer that provider is actually authorizing the claim/request
 - Provider cannot later deny having made the transaction or dispute its contents, since signature is attached
 - Assurance supported by existing business relationship between parties

Internal Workflow

• Scenario

- Hospital needs to ensure electronic forms have proper authorization/approval signatures
- How PKI is used
 - Hospital issues internal certificates to authorized employees
 - Employees use private keys to create digital signatures on forms they approve
 - If/when needed, hospital can verify signature using the employee's certificate

Internal Workflow (Cont.)

- Business Considerations
 - Digital signature created with and stored with completed form
 - Personal accountability for actions
 - Easy auditable
 - Analogous to employee identification badges used for facility security purposes
 - May not need certificates when binding between people and key pairs is determined by the business itself (as opposed to a trusted third party)
 - Other key management methods could be used

Business Partner Interaction

- Scenario
 - Health care network members need to exchange business documents using a public (un-secure) network
- How PKI is used
 - Partners exchange digital certificates ahead of time
 - Sender uses private key to create digital signature on document
 - Sender uses recipient's public key to encrypt document
 - Recipient uses private key to decrypt document
 - Recipient uses certificate of sender to verify signature

Business Partner Interaction (Cont.)

- Business Considerations
 - Signing sensitive documents protects against tampering and provides a lasting record of origin
 - Encryption of data ensures privacy when transmitting sensitive information over public communications media (e.g., Internet)
 - Self-signed certificates might be used in place trusted third party certificates
 - Must be verified out of band (e.g., compare certificates verbally)

Got PKI?

- PKI has high perceived barriers to entry
 - Technology is esoteric
 - Image is larger than life
 - Underlying technology used for many different business needs
 - Hype has preceded reality
 - Scope, schedule, and cost of PKI projects is not clear

Looks Hard?

PKI Components

• Core PKI functions

• Registration authority (RA)

- Certification authority (CA)
- Certificate repository (CR)
- End Entities
 - Subscribers
 - Relying parties

Options to Implement PKI

- Vendor offerings oriented toward three distinct models for implementing a PKI
 - Outsource the PKI to a trusted third party
 - Build the PKI with components
 - Buy a PKI that is complete out-of-the-box

Example Solution 1: Outsourced PKI

- Overview
 - This solution would involve the use of third party to provide CA services
- Primary components of this example solution
 - CA equipment: PKI Vendor
 - RA equipment: PKI Vendor (typically web interface)
 - CR equipment: PKI Vendor Directory
 - Subscriber equipment: Unmodified web browsers and servers (Netscape, Microsoft)
 - Application/User equipment: Unmodified web browsers and Servers (Netscape, Microsoft)

Description of Basic Operations

- The CA, RA, and CR equipment located at the Vendor facility
- "Local Registration Authority" (LRA) is used to delegate RA functions to customer locations

Significant Features and Advantages

• Rapid deployment

- Vendor supplies all necessary software and user interfaces
- Vendor will also supply policy documents (or models that can be easily modified), training, procedures, and implementation advice.
- Proven software tools and policies/procedures
- Less need for specialized expertise
- High availability
- Secure key generation
- High-security of the CA keys

Significant Features and Advantages (Cont.)

- Scalability
- Advancement of features
- Compliance with standards
- Cost for small deployment
- Increased user acceptance/trust of CA

Significant Limitations and Disadvantages

- Certificate functions rely on long-haul communications
- Cost for large deployment
- Limited ability to modify
- New features delivered at vendor option/pace
- Complex liability issues

Example Solution 2: Build with Components

- Overview
 - This solution would involve the use of PKI components integrated to perform all PKI functions
- Primary components of this example solution
 - CA equipment: PKI vendor
 - RA equipment: PKI vendor
 - CR equipment: Directory vendor (typically LDAP)
 - Subscriber equipment: Unmodified web browsers and server
 - Application/User equipment: Unmodified web browsers and servers

Build with Components

Description of Basic Operations

- Single tool provides the CA and RA functions
- Subscriber-side PKI functions provided by built-in functions in client and server software already deployed

Build with Components

Significant Features and Advantages

- Rapid deployment
- Cost effective for incremental deployment
- Standards compliant
- Easy acceptance and learning curve for subscribers

Build with Components

Significant Limitations and Disadvantages

- Lack of certificate life cycle management features
- Limited extensibility to non-web applications

Example Solution 3: Buy Out of the Box

- Overview
 - Use one comprehensive vendor solution for all PKI functions
- Primary components of this example solution
 - RA/CA/CR equipment: PKI vendor
 - Subscriber equipment: Client browser plug-in from PKI vendor
 - Application/User equipment: Proxy, web server plug-in, or application shim/plug-in from PKI vendor

Buy Out of the Box

Description of Basic Operations

- Vendor has already integrated the PKI components
 - Deployment consists of installing the components and configuring the interface tools to match local policy
 - The plug-in modules perform authentication, authorization, and encryption/decryption functions on web browser—server communications

Buy Out of the Box

Significant Features and Advantages

- Robust certificate management tools
- Tight integration between PKI components
- Interoperability with other applications using the PKI vendor's API

Buy Out of the Box

Significant Limitations and Disadvantages

- User interface learning curve
- Support for new browsers/servers
- Proprietary methods
- Client modifications

Conclusion

- Business drivers are clear
- Plentiful, mature vendor offerings lower barriers to entry
- Options for insertion of this technology make PKI a realizable capability

Conclusion

• Current/future trends in PKI life cycle

- Low/no footprint clients
- Web form signing
- Additional assurance features e.g., timestamp
- Enhanced registration options (in person; automated/self serve)
- Token storage of certificates for two-factor authentication
- Common policy frameworks
- Common methods for certificate management

Contact Information

Ed Bassett Enspherics, Inc. 5675 DTC Blvd Englewood, CO 80111 (303) 850-0495 ebassett@enspherics.com www.enspherics.com

