HIPAA Summit West
San Francisco, CA

HIPAA Security: Impact on Biomedical Technology, Devices & Systems

June 22, 2001

Technology in Medicine, Inc
Portion of HIPAA That Most Impacts Healthcare Providers
Relevant Portion of HIPAA

Subtitle A: Fraud and Abuse Control Program
Subtitle B: Revisions to Current Sanctions for Fraud and Abuse
Subtitle C: Data Collection
Subtitle D: Civil Monetary Penalties
Subtitle E: Revisions to Criminal Law
Subtitle F: Administrative Simplification
Subtitle G: Duplication & Coordination of Medicare-Related Plans

Identifiers, Codes & Transaction Sets
Privacy Rules
Security Rules

© Technology in Medicine ~ 3
Standards for electronic transactions

- Scheduled effective date: October 2002
- National standards developed for the healthcare industry for electronic data interchange (EDI)
- Intended to eliminate paper & incompatible electronic formats ... reducing need for duplicate data entry, photocopying & faxing
- Goal is to improve efficiency & substantially reduce administrative costs in healthcare industry
HIPAA Privacy Rules

Privacy rules

- Scheduled effective date: April 2003
- Rules deemed necessary to protect data in electronic transactions … but whose scope encompasses all protected health information (oral, written, or electronic)
- Rules limit use of protected health information
 - Patient’s authorization required before protected health information can be used for anything other than treatment, payment or healthcare operations … and patient has right to know who has accessed their information
 - Patient must be permitted access to their own information and must be able to challenge any information they feel is in error
Security rules

- Anticipated effective date: mid- to late-2003
- Rules deemed necessary to insure privacy & confidentiality of protected health information … but whose scope encompasses not only confidentiality but also the integrity and availability of all health information related to an individual that is electronically maintained or transmitted
- Rules outline detail required administrative procedures, physical safeguards, technical security services & technical security mechanisms
Effective implementation depends on “packaging” HIPAA Rules.

- Identifiers, Codes & Transaction Sets
- Privacy Rules
- Security Rules

Because they are in electronic form, Identifiers, Codes & Transaction Sets require additional Privacy precautions (as spelled out by HIPAA).

Effective Privacy requires Security precautions (as spelled out by HIPAA).
Categories of Healthcare Information:
HIPAA’s Privacy & Security Rules
Info/Data Relevant to HIPAA’s Privacy & Security Rules

- **Privacy Rule**
 Applies to *Individually Identifiable Health Information* (IIHI) or *Protected Health Information* (PHI)

- **Security Rule**
 Applies to *Health Information Related to an Individual*
Standards for Privacy Apply to Individually Identifiable Information

Individually Identifiable Health Information (IIHI) is information/data that:

1. Is created or received by the healthcare provider… and
2. Relates to the past, present, or future … health or condition of an individual, the provision of care to an individual … and

i. Which identifies the individual, or …

ii. There is a reasonable basis to believe that the information can be used to identify the individual

Federal Register, December 20, 2000

© Technology in Medicine ~ 10
Info/Data addressed by *Privacy Rule*

Individually Identifiable Health Information (IIHI)

or *Protected Health Information* (PHI) ~

examples include:

- Patient name,
- Patient ID #
- Patient likeness (e.g., photo)
- Any data that in some combination could be used to identify patient (e.g., address)
Standards for Security Apply to Health Information

Health Information means any information, whether oral or recorded in any form or medium, that –

1) Is created or received by a health care provider … and
2) Relates to past, present or future … health or condition of an individual, the provision of health care to an individual …

Federal Register, p. 43264
August 12, 1998
Info/Data Addressed by Security Rule

Health Information related to (but not necessarily identifying) an Individual ~ examples include:

- Diagnostic data
- Therapeutic data
- Any component of medical records
- Any component of billing info
Relationship between Info/Data addressed by Privacy & Security Rules

Health Information/Data

HIPAA Security Rule
Individual Health Information / Data that is electronically maintained or transmitted

HIPAA Privacy Rule
Individually Identifiable Health Information / Data (oral, written, or electronically maintained/transmitted)
Complying with HIPAA’s Privacy & Security Rules
Privacy & Security
are two separate concepts

- **Privacy** defined as controlling who is authorized to access information (the right of individuals to keep information about themselves from being disclosed)
- **Security** defined as the ability to control access and protect information from accidental or intentional disclosure to unauthorized persons and from alteration, destruction or loss

- Can have Security without Privacy but
- Cannot have Privacy without Security
Compliance with HIPAA’s Privacy Rule

Typically 99% of HIPAA Privacy compliance is organizational, operational, cultural (i.e., the organization’s policies, procedures and the staff’s adherence to those policies & procedures). Key elements include:

- Privacy officer
- Privacy committee
- Policies
- Procedures
- Staff education
- Contacts with Business Associates
- Audit & review
Compliance with HIPAA’s Security Rule

Typically 75% of HIPAA Security compliance is organizational, operational, cultural. The remaining 25% is “technical”. Key elements include:

- Security officer
- Security committee
- Policies & Procedures
- Staff education
- Inventory
- Physical safeguards
- Technical security services
- Technical security mechanisms
- Contacts with Business Associates
- Audit & review
HIPAA Security Rule’s Impact on Biomedical Technology
Scope of HIPAA Security Standards

- **Applicability**
 The security provisions of HIPAA apply to ... any health care provider that electronically maintains or transmits any health information relating to an individual.

- **Specific Requirements**
 The security standard requires that each health care entity engaged electronic maintenance or transmission of health information:
 - ✓ assess potential risks and vulnerabilities to the individual health data in its possession in electronic form, and
 - ✓ develop, implement, and maintain appropriate security measures.
 - ✓ Most importantly, these measures must be documented and kept current.

The standard consists of:
 - ✓ requirements that a health care entity must address in order to safeguard the integrity, confidentiality, and availability of its electronic data.
 - ✓ implementation features that must be present in order to satisfy each requirement.

Federal Register, pp. 43245 & 43250
August 12, 1998

© Technology in Medicine ~ 20
Examples of Devices/Systems
Maintaining / Transmitting Individual Health Data in Electronic Form

Information Technology
- Electronic Medical Records
- Billing & Claims Processing
- Networks
- Servers
- Computers
- Peripherals
- Workstations
- Terminals
- Web Sites
- Remote access
- Application Service Providers

Hybrid Systems

Biomedical Technology
- Physiologic monitoring
- Cardiology analyzers (e.g., EKG)
- Pulmonary function analyzers
- Clinical lab analyzers
- Diagnostic ultrasound
- Medical imaging
- Endoscopy
- Stress test systems
- Ventilators
- PACS
- Anesthesia systems
- Audiometers
- Infusion pumps
- Defibrillators
- Cardiac assist devices
Relevance to Biomedical Technology

Biomedical devices & systems represent a substantial & growing risk area. The basis of growing security risk lies in two trends:

- Biomedical devices and systems are being designed and operated as special purpose computers. More features are being automated, increasing amounts of health data are being collected, analyzed & stored in these devices.

- There has been a rapidly growing integration & interconnection of disparate biomedical (and information) technology devices & systems where health information is being increasingly exchanged.

Biomedical devices & systems represent a substantial repository of health information and therefore must be considered when implementing any comprehensive security program.
Medical Devices & Systems
Typical Data Interconnects

- Bedside Monitor
- Defibrillator
- Remote Monitor
- Clinical Analyzer
- Ventilator
- Remote Viewing Workstation
- CT Scan
- Diagnostic Ultrasound
- Personal Digital Assistant
- Infusion Pump
- Local Area Network (LAN), Wide Area Network (WAN), and/or Internet
Biomedical Technology:
Preparatory Steps for
HIPAA Security Compliance

1) Acquire working knowledge of relevant HIPAA rules
2) Inventory devices & systems
3) Identify devices & systems with health data
4) Assess risk associated data compromise for devices & systems containing health data
5) Determine existing precautions taken for affected devices & systems
6) Gap analysis (determining difference between where organization “is” and where it “should be”)
Step 1: Acquire Working Knowledge of Relevant HIPAA Rules

- Review proposed Security Rules published by HHS (Federal Register: Aug 12, 1998) or, when available later this year, final Security Rules
- Learn your organization’s HIPAA Security preparedness
 - Roles & Responsibilities
 - Policies & procedures
 - Education programs
 - Physical safeguards
 - Technical security services & mechanisms
- Use internet (HIPAA related listservs & web-sites) and professional societies to stay current on HIPAA developments
Step 2: Inventory Medical Devices & Systems
Areas likely to have affected Devices & Systems

- Clinical lab information systems (chemistry)
- Medical imaging (ultrasound, NMR, CT, Mammo, Bone density)
- Radiation therapy
- Pharmacy
- Special Care (SCU, ICU, CCU)
- Fetal & Neonatal monitoring
- Surgery (video systems, monitoring)
- Pulmonary function
- Cardiology (EKG, Holter, pacing)
- Physical therapy (exercise systems)
- Telemedicine (extending diagnostic technologies to clinics, physician offices, patient’s home & workplace)
Step 3: Identify Devices & Systems Containing Health Information

- Displays
- Paper (i.e., Printouts)
- X-Rays
- Photographs
- Non-volatile Memory
- Hard Disk Drives
- PC Card or Memory Stick
- Removable Diskette
- CD-Rom, DVD or Optical Disk
- Digital Data Tapes
- VCR Tapes
- Telephone, Network or Direct Connect Cable
- Wireless

This information is about HIPAA and therefore should be viewed carefully.
Step 3: Identify Devices & Systems Containing Health Information

Health information is at risk where it is:

Printed
- Plain paper,
- Strip chart,
- Photo, or
- X-ray film

Displayed
- CRT,
- Liquid plasma,
- Liquid crystal, or
- LED display

Transmitted and/or Received via
- Telephone,
- Network,
- Direct cable connect
- Wireless

Recorded electronically
- Hard disk,
- Floppy disk
- Compact disk,
- Non-volatile memory
- Tape
Step 4: Assess Risks associated with Health Info (3 Categories of Risk)

- Confidentiality
- Integrity
- Availability
Step 4: Assess Risks associated with Health Info on Devices & Systems

Requirements a health care entity must address in order to safeguard electronic data’s

- **Confidentiality**: degree to which *individual health data* requires protection from unauthorized disclosure.

- **Availability**: degree to which *individual health information* must be available on a timely basis to meet operational requirements or to avoid compromising care … also includes insuring that health information is used only for intended purposes.

- **Integrity**: degree to which *individual health data* must be protected from unauthorized, unanticipated, or unintentional modification.

Federal Register, p. 43250
August 12, 1998

© Technology in Medicine ~ 30
Step 4: Assess Risks Associated with Health Info on Device & Systems

Confidentiality

High

Medium

Low

Integrity

Medical Device/System with Health Information/Data relating to an Individual

Availability

Low
Step 4: Assessing Risks
Ranking Security Risk Level

<table>
<thead>
<tr>
<th>RISK LEVEL</th>
<th>Impact on Patient</th>
<th>Impact on Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Potential degree to which health care would be adversely impacted by compromise of availability or integrity of information</td>
<td>Potential degree to which privacy would be adversely impacted by compromise of confidentiality of information</td>
</tr>
<tr>
<td></td>
<td>Potential degree to which privacy would be adversely impacted by compromise of confidentiality of information</td>
<td>Potential financial impact</td>
</tr>
<tr>
<td>High</td>
<td>Serious impact to patient’s health (including loss of life) due to: misdiagnosis, delayed diagnosis or improper, inadequate or delayed treatment</td>
<td>Could identify patient and their diagnosis and/or treatment</td>
</tr>
<tr>
<td>Medium</td>
<td>Minor impact to patient’s health due to: misdiagnosis, delayed diagnosis or improper, inadequate or delayed treatment</td>
<td>Could identify patient</td>
</tr>
<tr>
<td>Low</td>
<td>Minor Impact</td>
<td>Could not be associated with a specific patient</td>
</tr>
</tbody>
</table>
Step 5: Determine Existing Precautions
(taken for affected devices & systems)

a) Affected Device/System *Displays Data*

- Is the display only physically observable by authorized staff/users?
- Is device/system kept in secure area accessible only by key, combination lock, access card or similar?
- Does data access require a user name & password (or other appropriate authentication method)?
Step 5: Determine Existing Precautions (taken for affected devices & systems)

b) Affected Device/System Outputs Data (e.g., paper, film, photo, removable storage)

- Is the output stored in a secure location (i.e., in a room or cabinet secured by key, combination lock, access card or similar)?

- Is the output destroyed by acceptable means when no longer needed? For example:
 - Shred paper, film, photo
 - Erase/overwrite disks, pc cards, memory stick
 - Deposit in locked “Destruction Bin” for disposal by a bonded service
Step 5: Determine Existing Precautions
(taken for affected devices & systems)

c) Affected Device/System Stores Data (e.g., hard disk, non-volatile memory, PC card, memory stick, diskette, CD-ROM, data tape, VHS tape)

✓ Is device/system kept in secure area accessible only by key, combination lock, access card or similar?

✓ If device/system is not kept in secure area, are all removable storage components (i.e., diskette, PC Card, memory stick, CD-ROM, data tape, VHS tape) secured (i.e., not removable) when not in use?

✓ Does data access require a user name & password (or other appropriate authentication method)?
Step 5: Determine Existing Precautions
(taken for affected devices & systems)

d) Affected Device/System **Transmits/Receives Data via Cable or Wireless**

- Is data transmitted via secure cable connection (i.e. no access possible via unsecured hub or other unsecured intermediate connection)?
- Is data encrypted prior to transmission via wireless or public network?
- Does the system permit remote access?
 - Does the system security restrict remote access to specific devices or locations?
 - Does the system log and provide audit trail of remote access activity?
Step 5: Determine existing precautions
(taken for affected devices & systems)

e) All Affected Devices & Systems

✓ Is the device/system physically secure?
 o Is the system kept in secure area, inaccessible except to authorized users?
 o Are components secure within the system (i.e., can any component containing data be removed)?

✓ Does data access require appropriate ID & password (or other appropriate authentication)?

✓ Is critical data backed up & stored in secure location?

✓ Is the system PC based?
 o Does the system run virus protection?
 o Does it prevent boot-up from an unauthorized boot disk?

✓ Have device/system users been trained in security and are they practicing appropriate security procedures?
Step 6: Gap Analysis

“Gap” is difference between:

- Current security program (from inventory, risk assessment & determination of current security precautions) and
- Security program mandated by HIPAA
Step 6: Gap Analysis

Gap analysis (and subsequent audits) security program effectiveness in terms of:

- Policies
- Procedures
- Implementation
- Testing
- Integration

Increasing Security Program Effectiveness

GOAL:
HIPAA Compliance & an Effective Info Security Program
Step 6: Gap Analysis

Gap analysis is used to prepare plan for

- Achieving HIPAA compliance and
- Implementation priorities
Biomedical Technology: Steps for achieving HIPAA Compliance

1. Assign roles & responsibilities ~ involve all affected departments
2. Treat Security Risks (HIPAA Security Matrix)
 a) Administrative procedures
 b) Physical safeguards
 c) Technical security services
 d) Technical security mechanisms
3. Educate Staff
4. Require cooperation of Business Associates
5. Establish on-going audit & review process
Step 1: Assign roles & responsibilities
Cross-departmental Participation/Cooperation

Effective Information Security Program Requires Cross-Departmental Participation/Cooperation (Policies, Procedures, Education)
Step 2: Treat Security Risks

<table>
<thead>
<tr>
<th>Four Categories of Requirements in HIPAA’s Security Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Procedures</td>
</tr>
<tr>
<td>Documented, formal practices to manage the</td>
</tr>
<tr>
<td>✓ Selection & execution of security measures to protect data and</td>
</tr>
<tr>
<td>✓ Conduct of personnel in relation to the protection of data</td>
</tr>
<tr>
<td>Physical Safeguards</td>
</tr>
<tr>
<td>Protection of physical computers systems (any hardware storing or transmitting health data) and related buildings & equipment from</td>
</tr>
<tr>
<td>✓ Natural & environmental hazards (e.g., fire, flood)</td>
</tr>
<tr>
<td>✓ Intrusion (i.e., use of locks, keys and administrative measures to control access)</td>
</tr>
<tr>
<td>Technical Security Services</td>
</tr>
<tr>
<td>Processes that are put in place to</td>
</tr>
<tr>
<td>✓ Protect information access</td>
</tr>
<tr>
<td>✓ Control & monitor information access</td>
</tr>
<tr>
<td>Technical Security Mechanisms</td>
</tr>
<tr>
<td>Processes put in place to prevent unauthorized access to data that is transmitted over a communications network</td>
</tr>
</tbody>
</table>

© Technology in Medicine ~ 43
Step 3: Educate Staff

Conduct orientation of new staff and on-going education of existing staff on:

- Privacy & Security concerns
- Organization’s Privacy policies & procedures
- Organization’s
 - Security Policies,
 - Security Procedures
 - Technical security services
 - Technical security mechanisms
Step 4: Require Cooperation of Business Associates

- Identify *Business Associates* (businesses that could conceivably access health data) ~ e.g.,
 - Medical device/system manufacturers
 - Independent service organizations (ISO)
 - Consultants, educators

- Establish formal agreements where *BA* agrees to:
 - Limit uses and disclosures of health data
 - Destroy or return any health data when no longer needed
 - Maintain safeguards to protect health data
 - Report to organization the use or disclosure
Step 5: Establish on-going audit & review process

- Audit to insure requirements associated with security elements & their implementation features are effectively met
- Analyze information security Incident Reports to determine need for corrective action

GOAL: HIPAA Compliance & an Effective Info Security Program

Increasing Security Program Effectiveness

Integration
Testing
Implementation
Procedures
Policies
Step 6: **Document, Document, Document**
Audit:
Evaluate effectiveness of Security measures thru:
1. Periodic Audits
2. Incident reporting

Document

Assess Risk:
1. Inventory Applications, Devices & Systems
2. Identify Applications, Devices, & Systems that may contain data
3. Identify what, if any, precautions have been taken

Document

Treat Risks:
1. Apply Security measures (including procedural, physical, & technical) where risks have been identified
2. Conduct Staff Education & Training

Report to Security Committee

Security Committee:
Establish
1. Working knowledge of HIPAA
2. Roles & Responsibilities
4. Review process
Technology Standards for Medical Device/System Manufacturers

- How are the technology manufacturers incorporating current standards in their products?
- What implication do these standards have on HIPAA compliance?
Industry Standards

- **Medical Information Bus ~ MIB (IEEE 1073)**
 Designed for communications in health care applications, primarily between bedside medical devices and patient care information systems (e.g., transmitting data to/from patient-connected bedside devices such as monitors, ventilators & infusion pumps)

- **Digital Imaging & Communications in Medicine (DICOM 3.0)**
 Designed for transmitting radiological images between imaging systems (ultrasound, MRI, CT, and x-ray) and computerized systems and peripherals (monitors, printers, storage devices)

- **Standards on Healthcare Informatics (ASTM E-31)**
 Designed to address architecture, content, portability, format, privacy, security and communications in medical devices and healthcare information systems
Industry Standards (cont)

- **IEEE 802 Wired & Wireless Networking Standards**
 Standards for networking devices and systems
 - Local Area Network (*Wired*) ~ Ethernet (IEEE 802.3)
 - Wireless Local Area Network (IEEE 802.11b)
 - Wireless Personal Area Network ~ WIPAN (IEEE 802.15 ~ includes Bluetooth)
 - Broadband Wireless Access (IEEE 802.16)

- **Wireless Medical Telemetry (WMTS)**
 Standard for transmission of data between medical device components over 14 MHz of radio-frequency spectrum (priority allocated to medical applications by FCC in June 2000)

- **Health Level 7 (HL7)**
 ASCII-based, batch transaction standard defining application level messages used by major applications such as admission/discharge/transfer (ADT), orders, results, and clinical observations.

- **ANSI ASC X12**
 ASCII-based standard used for healthcare claims, referrals, payment/remittance advice, claim status, claim attachments, insurance plan eligibility, etc
HIPPA Privacy/Security Rules affect handling of individually identifiable health data.

HIPAA Administrative Simplification Rules affect these standards.

Healthcare Software Applications (medical records) compatible with HL7.

IEEE 802 Network Standards:
- Local Area Network (wired) Ethernet IEEE 802.3
- Wireless Local Area Networks IEEE 802.11b
- Wireless Personal Area Networks (Bluetooth) IEEE 802.15
- Broadband Wireless Access IEEE 802.16

Device data into HL7 data repositories.

ASTM E-31 Standards

Biomedical System Components

Biomedical Devices compatible with IEEE 1073

Medical Imaging Systems compatible with DICOM

© Technology in Medicine ~ 52
Other HIPAA Issues
Provider Progress Report re: HIPAA

(Source: AHA Financial Solutions Inc Survey; March 2001)

- HAVE DESIGNATED A SECURITY OFFICER?
- HAVE FORMED A HIPAA COMMITTEE?
- HAVE A HIPAA IMPLEMENTATION PLAN?
- RANKING HIPAA AS A PRIORITY FOR 2001
 - Low
 - Moderate
 - High
- SOURCE OF HIPAA ASSISTANCE
 - Intend to use outside assistance
 - Intend to only use in-house resources
- HAVE DONE A COST IMPACT ANALYSIS OF HIPAA
HIPAA Strategy for Providers

- Don’t wait for final HIPAA disposition.
- “Writing is on the wall” …
- Embrace security & take lead …
- Experience with Y2K shows delay only results in:
 - Outlay of more effort (i.e., \(delay = inefficiency \))
 - A compressed timeline
 - Significantly larger expenditures
- Delaying implementation of security
 - Postpones (i.e., loses) savings gained by efficiencies inherent in HIPAA
 - Results in competitive disadvantage …
 - consider e-commerce (and e-health) in their business plans
 - comprehensive information security program is an essential element in the foundation of any e-commerce or e-health enterprise

© Technology in Medicine ~ 55
HIPAA vs Y2K

- **Y2K was a “project”**
 - Was a fixed time effort with a known deadline and “end date”
 - Compliance requires solution that was technology-oriented
 - Required coordinated effort across functional & organizational lines

- **HIPAA is a “process”**
 - Like Y2K has deadline (to achieve compliance) but unlike Y2K, requires on-going effort (i.e., no project “end date”)
 - Compliance requires solution involving organizational & procedural changes as well as some technology changes
 - Like Y2K, also requires coordinated effort across functional & organizational lines
HIPAA Regulations are “Technology Neutral”

- No such thing as “HIPAA-compliant” technology
- HIPAA compliance requires development and implementation of effective Security Policies that are appropriate for the provider organization
- Technology must be selected & applied so as to support the implementation of whatever Security Policies the organization has established
- Therefore, there is not a “HIPAA-compliant technology” but rather “HIPAA-compliant Security Policies”
HIPAA’s Impact is Broad & Substantial

HIPAA will lead to tangible and intangible benefits by:

- **Standardizing EDI format**
 Reduced complexity associated with multiple standards, formats, definitions, identifiers

- **Encouraging electronic data transfer**
 Standardized electronic formats will make electronic data transfer more appealing among providers, payers and other business entities

- **Vendors will not have to customize their products (reducing their cost)**

- **Serving as an enabler for e-Health (est. $240 billion annually)**
 A flood of new e-Health applications will be considered that would have been impossible to implement without standardized data systems
HIPAA will enable the Future of Healthcare

e-Health will result in revolutionary changes in application of Biomedical Technology:

- Biomedical Technology will make expanded use of broadband internet
- Technology will enable patients to access expert diagnosis & therapy regardless of where patient is located
- Focus of diagnosis & therapy will move from doctor’s office & hospital to patient’s home & workplace
Beyond HIPAA
Some (not so) Long-Term Implications
May you live in interesting times! (Ancient Chinese blessing/curse)

- **e-Health**
 - HIPAA: $240 billion
 - Y2K: $8.5 billion
 - Other: $40 billion
Internet, World Wide Web, and networking technologies are substantially changing delivery of healthcare services.

- E-mail & Teleconferencing
- Access to medical information (i.e., medical web sites)
- Application Service Providers (ASP)
 Expert information systems
- Access to Patient Medical Records & Medical Images
- Telemedicine
 - Diagnosis (gather/analyze data) &
 - Therapy (administer treatment) remotely
e-Health: Telemedicine
Provides the “Virtual Office” Visit
@Home or @Work

- Check physiologic parameters using sensors connected to transmitter
 - EKG, EEG, Respiration
 - Oximetry
 - Blood Pressure
 - Weight
 - Temperature
 - Auscultation of heart & breath sounds
 - Blood, urine, stool analysis
 - Expired respiratory gas

- Visual Examination
 - teleconference (video camera),
 - endo/oto/ophalmo scopes
Trends Driving e-Health

- Development of “enabling” standards for
 - Healthcare, Internet, networking & communication technologies
 - Content, format, privacy & security of data transmitted
- Demographics ~ aging population
 79% of healthcare spending is managing chronic disease
- Population demand for quality & thorough care
- “Wiring” of society (i.e., broadband Internet access)
- Need to reduce expenses
 moving from “bricks” to “clicks”
- Reimbursement changes (3rd party payers covering new technologies that improve care and help reduce costs)
Equipment Management with Internet-connected Medical Devices

Devices on Internet transmit:

- Location
- Current Status & Settings
- Diagnostics
- Error Codes
Physicians & other medical providers are using personal digital assistants (PDAs) to:

- Send/receive e-mail with patients and other members of healthcare team
- Obtaining patient status reports, test results
- Issuing prescriptions (less error prone) & orders
e-Health: Telemedicine
Provides the “Virtual Office” Visit

Traditional
Patient - Doctor
Communications

Teleconferencing & e-Mail
will become common form
of Patient - Doctor
communication

© Technology in Medicine ~ 67
e-Health: Telemedicine Delivers Remote Diagnostics & Therapy

Implantable devices that can:

- Detect physiologic changes and transmit that data to physician or other health care providers
- Administer treatment (e.g., medication, electric stimulus, adjustment of settings on implanted device) upon receipt of a signal from a remote healthcare provider
Clothing with embedded sensors will enable medical personnel to monitor a wide range of physiologic conditions for patients who are known risks. Problems can be detected and appropriate care initiated often before the patient is aware any problem exists.
Miniature cameras in pill form can transmit and record high resolution images of gastrointestinal...
e-Health: Telemedicine Can Deliver Medical Expertise to Remote Locations

Virtual Reality Technology: Enables specialist to perform procedures from halfway across the world
Questions?