The Project Staff and Funding

- NORC staff working on the Project
 - Avi Singh, Principal Investigator
 - Michael Davern, Project Director
 - Elizabeth Hair, Project Manager
 - Peter Kwok, Lead Statistician
 - Joshua Borton, Statistician
 - Amanda Yu, Research Scientist
 - Craig Holden, Research Analyst

- ARRA funding provided by the Office of the National Coordinator for Health Information Technology.
Agenda

• What is the “Safe Harbor” method of de-identification?
• Why are we testing it now?
• What are we testing?
• How did we do the tests?
• What did we find?
• What does it all mean?
What is the “Safe Harbor” method of de-identification?

- Alternative to “expert determination” method
- HIPAA Privacy Rule §164.514(b)(2)(i)
- 18 direct and indirect identifiers must be removed and there must be no actual knowledge that information can be identified*

<table>
<thead>
<tr>
<th>1. Names</th>
<th>10. Account numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Geographic subdivisions smaller than state</td>
<td>11. Certificate/license numbers</td>
</tr>
<tr>
<td>3. All elements of dates except year</td>
<td>12. Vehicle identifiers/serial numbers</td>
</tr>
<tr>
<td>4. Telephone numbers</td>
<td>13. Device identifiers/serial numbers</td>
</tr>
<tr>
<td>5. Fax numbers</td>
<td>14. URLs</td>
</tr>
<tr>
<td>6. E-mail addresses</td>
<td>15. IP addresses</td>
</tr>
<tr>
<td>7. Social Security numbers</td>
<td>16. Biometric identifiers</td>
</tr>
<tr>
<td>8. Medical record numbers</td>
<td>17. Full face photographic images</td>
</tr>
<tr>
<td>9. Health plan beneficiary numbers</td>
<td>18. Any other unique identifying number, characteristic, or code</td>
</tr>
</tbody>
</table>

* This list does not present the full detail of each of these. Refer to the regulation text for additional specifications and requirements.
Why is HHS testing the Safe Harbor Method?

- De-identified data sets are not protected health information under HIPAA Privacy Rule.
- Recent authors have questioned whether the Safe Harbor method is still strong enough to prevent re-identification; availability of 3rd party data has increased since the method was developed.
- ONC is providing technical input to OCR with respect to de-identification policy.
- Results will inform departmental policy.
 - HITECH requires guidance on de-identification.
What is HHS testing?

Can a Safe Harbor de-identified data set be combined with readily available outside data to re-identify data set subjects?

– Some researchers and others have stated that increased personal data availability, e.g. on the Internet, makes re-identification easy, but there has been little empirical evidence to support that claim.
Why are people concerned about re-identification?

- Loss of privacy
- Material impacts
 - Health/life insurance
 - Employment
- Is secondary use safe?
 - Does public acceptance of secondary use depend on the context of that use?
 - Public good vs. other types of use
What is HHS testing?

- Two basic scenarios:
 1. Safe Harbor method de-identified data are obtained by someone with no knowledge except that which is available to the general public (low knowledge scenario).
 - e.g. a thief who steals a laptop just because the opportunity presents itself
 2. Safe Harbor method de-identified data are obtained by someone who has some knowledge about information it may contain (high knowledge scenario).
 - e.g. a research assistant seeking information on a celebrity known to be in the data set
What is HHS testing?

• Two basic contexts:
 1. Re-identify all (or as many as possible) individuals in the data set **(high yield scenario)**.
 – e.g. To obtain material for identity theft
 2. Re-identify particular individual(s) suspected to be in the data set **(targeted yield scenario)**.
 – e.g. To obtain damaging information on a public figure.
4 Classes of Risk

- **LOW Knowledge**
 - With little knowledge, try to identify a targeted individual.
 - With little knowledge, try to identify as many people as possible.

- **HIGH Knowledge**
 - With higher knowledge, try to identify a targeted individual.
 - With higher knowledge, try to identify as many people as possible.

Yield

Department of Health & Human Services
Office of the National Coordinator for Health Information Technology
4 Classes of Risk

Effort to re-identify is allocated to the desired payoff.

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td></td>
</tr>
<tr>
<td>With little knowledge, try to identify a targeted individual</td>
<td>With little knowledge, try to identify as many people as possible.</td>
</tr>
<tr>
<td>HIGH</td>
<td></td>
</tr>
<tr>
<td>With higher knowledge, try to identify a targeted individual</td>
<td>With higher knowledge, try to identify as many people as possible.</td>
</tr>
</tbody>
</table>
4 Classes of Risk

How much effort is required to produce a high yield from Safe Harbor de-identified data?

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>With higher knowledge, try to identify a targeted individual. With little knowledge, try to identify as many people as possible.</td>
</tr>
<tr>
<td>HIGH</td>
<td>With higher knowledge, try to identify as many people as possible. With little knowledge, try to identify a targeted individual.</td>
</tr>
</tbody>
</table>
Two different challenges

1. Given a Safe Harbor Method de-identified data set, how many of the records can be accurately linked back to specific patients?

2. Is Person X in this de-identified data set?
Two different challenges

1. Given a de-identified data set, how many of the records can be accurately linked back to specific patients?

2. Is Person X in this de-identified data set?
Research Question

How likely is it that any particular record in a HIPAA Safe Harbor de-identified data set can be correctly re-linked to a person?

Is it easy or hard?
How is this testing being done?

- A set of ~15,000 Safe Harbor method de-identified patient records were pulled from a large academic health center serving a multi-county region of about 1.6 million.
 - To increase the likelihood of an “easy” match, all subjects were drawn from a pool who self-identified as part of a large minority ethnic group
 - The NORC research team did not have access to the real identities of the subjects
- A matched list of individuals in the same geographic area and of the same ethnic group was obtained from a commercial data repository (considered reliable enough by the US Census to be used to verify and cross-check its household data).
How is this testing being done?

• NORC researchers tried to match de-identified records with identifiable records in the purchased database.
 – 2-step process
 1) To get an accurate linkage, there must be uniquely correlating information
 • People who have many traits in common are very difficult to correlate with any certainty.
 • People who have unique or near-unique “profiles” are easier to match.
 • Therefore, Step 1 is to search for unique profiles
 • Out of ~15,000 de-identified records, this data set produced 216 “uniques”.
How is this testing being done?

• Step 2
 1) Manually search through the external source data (e.g. InfoUSA) to see if any of the records align with any of the “uniques” in the de-identified data set.
 2) Send the possible matches back to the health center data team for verification that a true match was made.

All done with IRB approval.
What are the findings?

• 216 unique profiles found in the de-identified data (1.5%)
 – As data sets grow larger, unique profiles are fewer.
 – Only 84 unique profiles out of 32,549 (0.25%) InfoUSA records in the same geographic area and same ethnic group

• 28 potential pairs were found after combing through the data manually
 – There are no matching algorithms the team knows of that are more accurate than using human judgment because
 (a) contextual knowledge is essential and
 (b) data sources are “dirty”

• Only 2 were verified to be correct matches…
 …for a match rate of less than 0.01%
What does this all mean?

• Matching up Safe Harbor de-identified records to publicly available data is:
 – Labor-intensive
 – Costly
 – Has a low yield

These facts are a deterrent to identity thieves

Some provisos apply:

– The larger the data set, the safer it is (safety in numbers)
– The more extra knowledge an intruder has, the better they will be able to match the data
Notes

• Data sets should be handled such that if they were to fall into the wrong hands, correlating information that would assist in re-identification is not present
 – e.g. do not ship a de-identified data set together with a copy of a corresponding third-party data source
• Smaller data sets should be treated carefully if they contain a higher proportion of unique profiles.
 – Phase 2 of this research looks at ways to apply additional treatment to data sets to reduce the likelihood of re-identification
Notes

Two types of highly targeted attacks are extremely difficult to foil.

1. Focused attack on a specific individual, e.g. a celebrity.

 It is probably a bad idea to include Britney Spears in a de-identified data set, for example.

2. An attack that merely attempts to prove that de-identification is not perfect.

 No method is perfect and a determined attacker, given enough time and money, is likely to be able to demonstrate this acknowledged fact.
Notes

• Under most circumstances HIPAA Safe Harbor method of de-identification protects against re-identification.
 – Best practice may include additional steps, beyond removal of Safe Harbor Method identifiers to further reduce risk in certain circumstances
 • e.g. selective perturbation of some of the variables
• This study was predicated on de-identified data used in medical research.
 – Uses for commercial purposes have different dynamics
 • Patient sensitivity to re-identification risk
 • Motivation and opportunity to try re-identification
Resources

Office for Civil Rights De-Identification Workshop

Researchers have been developing methods to treat data sets so that re-identification risk is even further reduced while maintaining as much utility as possible.

Webcast and more available at:

ONC Office of the Chief Privacy Officer
Main Number: (202) 690-7151

NORC
Main Number: (301) 634-9300