### Using the Cost of Poor Quality to Drive Process Improvement

March , 2006

Presented by: **Dan Olivier, Certified Software Solutions, Inc.** (dolivier@certifiedsoftware.com)

Javad Seyedzadeh, Bayer Healthcare Diagnostic Division (javad.seyedzadeh.b@bayer.com)

## Objectives: To Understand COPQ

- 1. What is COPQ
- 2. Elements of the model
- 3. Calculating COPQ
- 3. Real World Applications
- 4. Implementing Improvement actions





# The Cost of Poor Quality (COPQ)

• Represents the <u>difference</u> between

- The actual cost of production or service



- What the **cost would be** if the process were effective in manufacturing products that
  - met customer needs and
  - were defect free.

#### **COPQ** Equation

#### COPQ = Costs (external failures + internal failures + appraisal + preventive action)

Many times white collar poor quality costs are not included in COPQ calculations (out of conformance purchases, excess inventory, ...) (Atkinson)

# Why Cost of Poor Quality?

- Speaks in the language of management, \$\$\$
- Shows how profit is affected by quality
- Can prioritize quality improvement actions
- Serves as the impetus for actions

In the US about a third of what we do consists of redoing work previously "done". (Juran)



### Related Quality Initiatives

- Six Sigma uses defect costs to quantify savings
- Lean Manufacturing focuses on reducing appraisal costs
- Design Controls focuses on early review and test activities to find defects early

Defects are not free. Somebody makes them and gets paid for making them. (Deming)

# 2. Elements of the Model

| α                  | ſ                                           | Rework/- | Supplier | Document | R&D∙     | R&D or Mfg.     |
|--------------------|---------------------------------------------|----------|----------|----------|----------|-----------------|
|                    | Personnel¤                                  | Retesta  | Defects¤ | Review¤  | Test     | Validation Test |
|                    |                                             |          |          |          | Defects¤ | Defects¤        |
| α                  | R&D·or·Mfg.·Engineers¤                      | α        | α        | α        | α        | α               |
| 1.→¤               | <b>Failure</b> ·Investigation·¤             | α        | α        | α        | α        | α               |
| 2.→¤               | Identify Root Cause ©                       | α        | α        | α        | α        | α               |
| 3.→¤               | Define Corrective Action                    | α        | α        | α        | α        | α               |
| 4.→¤               | Coordinate-with Supplier ©                  | α        | α        | α        | α        | α               |
| 5. <b>→</b> ¤      | Implement · Corrective · Action · $\square$ | α        | α        | α        | α        | α               |
| <mark>6.→</mark> ¤ | Verify/Validate Effectiveness · ¤           | α        | α        | α        | α        | α               |
| 7.→ĭ               | Update·R&D·Documents·□                      | α        | α        | α        | α        | α               |
| 8.→¤               | Update Manufacturing ·                      | α        | α        | α        | α        | α               |
|                    | <b>Documents</b> •□                         |          |          |          |          |                 |
| <b>9</b> .→ĭ       | Perform·Regression·Testing·¤                | α        | α        | α        | α        | α i             |
| 10.4               | Perform·Validation·¤                        | α        | α        | α        | α        | α i             |
| α                  | Total·Hours·R&D·or·Mfg·                     | α        | α        | α        | α        | α i             |
|                    | Engineers Personnela                        |          |          |          |          |                 |
| α                  | <b>Manufacturing</b> ·Personnel·¤           | α        | α        | α        | α        | α               |
| 11.4               | Rework·¤                                    | α        | α        | α        | α        | α               |
| 12.4               | Reprocess                                   | α        | α        | α        | α        | α               |
| α                  | Total Hours Manufacturing                   | α        | α        | α        | α        | α               |
|                    | Personnel·¤                                 |          |          |          |          |                 |
|                    |                                             |          |          |          |          |                 |

#### Cost of External Failures

- Costs for defects <u>found by the customer</u>:
   MDRs,
  - Reports of corrections and removals,
  - Field service corrections,
  - Field service bulletins, and
  - Software patches.



#### Cost for Internal Failures

Cost for defects found by R&D or Mfg

- Unclear requirements
- Improper design and implementation
- Improper design and implementation
- Incorrect test documentation
- Incoming inspection defects
- In-process testing defects
- Final acceptance testing defects
- Rework



### Cost for Appraisal

Costs for checking defects including:

- Review of system specifications (R&D),
- Review & inspection during manufacturing processes,
- Review of quality records, and
- Audits



#### Cost for Preventive Action

Cost for initiatives to improve processes:

- Use techniques to better understand requirements
- Employ programs to reduce design defects
- Implement tools to reduce manufacturing defects
- Institute quality improvement programs



#### 3. Calculating COPQ



#### Estimating the Numbers

#### Calculate full time personnel

- \$200,000/year for full time personnel
- Assume 2000 hours per year
  - 50 weeks x 40 hours
  - \$100/hour



# Sample Spreadsheet Worksheets

#### Labor Rates

#### **Defect Costs (External and Internal)**

- 1. Estimate the number of defects
- 2. Estimate the hours to address each defect
- 3. Estimate the cost per defect including various labor rates
- 4. Estimate any additional costs that may be incurred for defects
- 5. Estimate the total cost per defect category
- 6. Estimate the total cost for all defects for a year period

#### **Appraisal Costs**

- 1. Estimate appraisal labor costs
- 2. Estimate appraisal capital costs
- 3. Estimate appraisal total costs

#### **Preventive Action Costs**

1. Estimate total preventive action costs **Total COPQ** Page - 15



#### 4. Real World Applications



### Implementing COPQ

- With little or no financial system changes Medical Device Manufacturers can
  - Identify their external failure costs
  - break these costs out by product, complaint symptom, part usage, serial number, customer and region
  - Pareto these costs and prioritize corrective actions
- Through appropriate statistical analysis we can;
  - Identify any changes in rate for a particular issue and tie down the timeline.
  - Determine if differences exist in either serial numbers / lot numbers or regions
- This additional information can dramatically reduce the time spent investigating the root cause.



### Internal Failure: Safety Accidents

- Bayer considers the costs of work related accidents to be a cost of poor quality.
- Bayer has estimated that indirect costs are 6-8 times direct costs (replacement workers, missed shipments/sales/development schedules, administrative costs, OT).
- To improve in this area we initiated the Bayer Structured Safety & Health program (BSSHP).
- One of the key elements within this program is a employee close call system which encourages the identification and correction of potential hazards and raises employee awareness and participation in safety.



Performance in 2005 represents a 73% reduction over year 2000 performance with estimated savings of over \$2 Million.

Page - 18

## Customer Complaint Reduction



In this case Bayer has reduced customer complaints associated with this issue by over 48%. This correction also had hard cost savings in excess of \$275,000.00

Diagnostics Division

By utilizing our external failure data Bayer has been able to identify high impact (cost and customer) issues and drive improvements in these areas.

#### Field Corrective Actions

- Field Corrective Action: A correction or removal for product no longer under Bayer's control.
- The costs associated with an individual FCA can range from \$20K to up to \$30 Million for a full product recall.
- We have consistently reduced the number of FCAs every year since 1999, and 2004 represented an 83% reduction in FCAs



With an average cost of \$250,000 this equates to over \$13,000,000 in savings through FCA prevention.



Page - 20

### COPQ: Data

- By analyzing the data already collected through our quality system we have been able to determine that
  - Worldwide part replacement costs = 3.4% of sales
  - Worldwide complaint handling costs = 0.8% of sales
  - Worldwide field service visit costs = 4.8% of sales
- <u>Direct</u> External failure costs total = 9% of sales.
- We have used this information to begin the process of addressing our COPQ.



#### Industry Example

| COPQ as a percent of total cost             | ts Before            | After         |
|---------------------------------------------|----------------------|---------------|
| • Failure cost                              | 6.3%                 | 4.0%          |
| <ul> <li>Appraisal cost</li> </ul>          | 2.8%                 | 2.2%          |
| <ul> <li>Preventive action cost</li> </ul>  | 0.2%                 | 0.6%          |
| • Total                                     | 9.3%                 | 6.8%          |
| Savings                                     |                      |               |
| <ul> <li>Appraisal costs reduced</li> </ul> | \$430,000            |               |
| • Scrap and rework reduced                  | \$2,068,000          |               |
| <ul> <li>Complaint costs reduced</li> </ul> | \$536,000            |               |
| Reference: Total Quality Control, Arm       | and V. Feigenbaum, p | <b>b</b> .131 |
| For many companies quality costs            | s are 20% of sales   | (Juran)       |

Page - 22

#### 5. Driving Process Improvement



#### Four Assumptions in the Model

- 1. There is a root cause for each defect
- 2. Defects are preventable
- 3. It is better to prevent than correct defects
- 4. Inspection/testing can be reduced for capable processes

# Investment in Preventive Actions can yield significant savings!

#### Trend Chart using COPQ Model



Cost Of Poor Quality = (cost of external failures) + (cost of internal failures) + (cost of appraisal) + (cost of preventive actions)

#### Improvement Activities: Manufacturing

- Reduce errors with process design changes (poka-yoke)
- Addition of test fixtures to simplify manual processes
- Capability studies to define optimum parameter settings
- Enhance supplier controls to refine part specifications
- Redesign of device for improved manufacturability
- Addition of automated manufacturing equipment
- Enhanced automated test equipment
- Refinement of acceptance test criteria
- Real time automated test data trending
- Refinement of work instructions/formulations

#### Improvement Activities: Research and Development

- Redesign to reduce parts to improve reliability
- More system integration testing for design changes
- Closer participation of R&D in definition of manufacturing processes
- Conduct early parallel design and test activities
- Use focused checklists to enhance review effectiveness
- Employ focus groups to better understand customer needs
- Use project post-mortems to identify root cause for historical failures
- Redesign to facilitate future changes
- Implement a culture of defect prevention

#### **Quality Improvement Evolution** Level III Quality System: **Effectiveness of Quality System Continuous improvement** emphasis **Level II Quality System: Measures implemented to** track effectiveness Level I Quality System: **Procedures established** Level 0 Quality System: Ad hoc processes **Phases/**Time

Page - 28

### Summary: Why COPQ

- Add to the "toolbox" of the quality professional
- Shows that investment in quality yields dividends
- Defines priorities for improvement actions
- Facilitates a culture of continuous improvement



#### For Further Information

#### Dan Olivier at Certified Software Solutions, Inc. (CSS) dolivier@certifiedsottware.com (858) 675-8200

#### Javad Seyedzadeh at Bayer Diagnostics javad.seyedzadeh.b@bayer.com (914) 524-2682

#### CSS specializes in providing quality system and validation services for medical device and pharmaceutical manufacturers.