Research Designs For Evaluating Disease Management Program Effectiveness

Disease Management Colloquium June 27-30, 2004

Ariel Linden, Dr.P.H., M.S. President, Linden Consulting Group



#### What's the Plan?

Discuss "threats to validity"

- Provide methods to reduce those threats using currently-used evaluation designs
- Offer additional designs that may be suitable alternatives or supplements to the current methods used to assess DM program effectiveness



#### **Measurement Error**

Treatment Interference Loss to Attrition

New Technology

**Benefit** Design

Reimbursement

**Selection Bias** 

Case-mix

VALIDITY

Seasonality

Hawthorne Effect

Maturation

Access

S Unit Cost Increases mix Regression to the Mean Secular Trends



#### **Selection Bias**

<u>Definition</u>: Participants are not representative of the population from which they were drawn:

Motivation

Severity or acuteness of symptomsSpecifically targeted for enrollment



#### Fix #1: Randomization

How: Distributes the "Observable" and "Unobservable" variation equally between both groups

Limitations: costly, difficult to implement, intent to treat, not always possible





#### Fix #2: Standardized Rates

How: Direct/indirect adjustment enables comparisons over time or across populations by weighting frequency of events

Limitations: does not control for "unobservable" variation



## **Age-adjusted Program Results**

| Age<br>Group  | Pre-Program<br>(rate/1000) | r X <i>P</i> | Program<br>(rate/1000) | r X <i>P</i> | Proportion ( <i>P</i> )<br>of Population |
|---------------|----------------------------|--------------|------------------------|--------------|------------------------------------------|
| 20 – 29       | 7.3                        | 0.9          | 10.2                   | 1.2          | 0.1189                                   |
| 30 – 39       | 65.2                       | 5.7          | 79.9                   | 6.9          | 0.0868                                   |
| 40 – 49       | 190.8                      | 13.4         | 173.6                  | 12.2         | 0.0703                                   |
| 50 – 59       | 277.9                      | 21.3         | 226.1                  | 17.4         | 0.0768                                   |
| 60 - 69       | 408.4                      | 25.2         | 287.8                  | 17.7         | 0.0616                                   |
| 70 - 79       | 475.8                      | 17.7         | 368.8                  | 13.8         | 0.0373                                   |
| 80 +          | 422.2                      | 8.4          | 356.0                  | 7.0          | 0.0198                                   |
| Adjusted rate |                            | 92.6         |                        | 76.2         |                                          |



#### Tenure-adjusted Program Results

| Baseline Group                           | Compared to<br>inflation-<br>adjusted                                        | Baseline Group                                              | Compared to<br>inflation-<br>adjusted                       |
|------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| 2003 prevalent<br>group's 2003<br>claims | 2003 prevalent<br>group's 2004<br>claims plus<br>2004 incident               | 2002 prevalent<br>group's 2003<br>claims                    | 2003 prevalent<br>group's 2004<br>claims                    |
|                                          | group assumed<br>to have cost<br>2003 prevalent<br>group s claims<br>in 2003 | 2003 Newly<br>incident<br>members<br>actual claims,<br>2003 | 2004 Newly<br>incident<br>members<br>actual claims,<br>2004 |

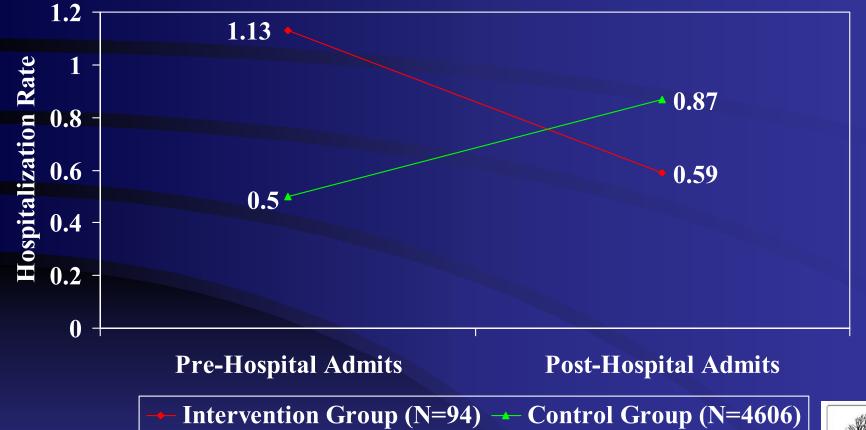


Fix #3: Propensity Scoring

What?: Logistic regression score for likelihood of being in intervention

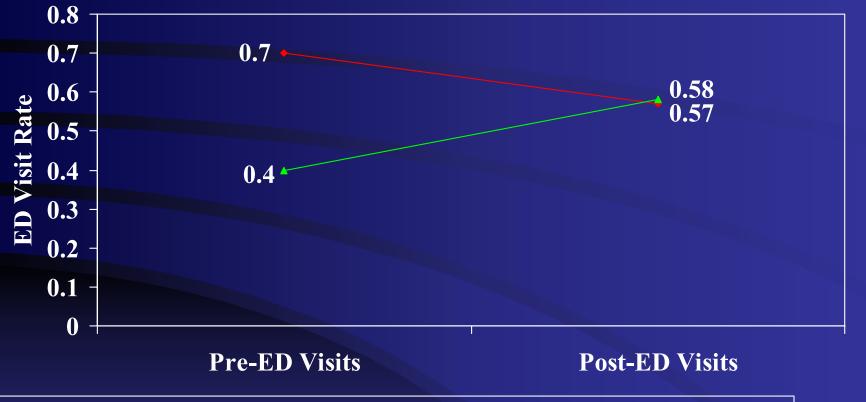
How: Controls for "Observable" variation

Limitations: does not control for "unobservable" variation




## 1<sup>st</sup> Year CHF Program Results

|                      | Intervention<br>(N=94) | Control Group<br>(N=4606) | P(T<=t)<br>two-tail |
|----------------------|------------------------|---------------------------|---------------------|
| Age                  | 77.4                   | 76.6                      | NS                  |
| % Female             | 0.51                   | 0.56                      | NS                  |
| % Portland           | 0.17                   | 0.69                      | p<0.0001            |
| Pre-Hospitalization  | 1.13                   | 0.5                       | p<0.0001            |
| Pre-ED               | 0.7                    | 0.4                       | p=0.003             |
| Pre-Costs            | \$18,287               | \$8,974                   | p<0.0001            |
| Post-Hospitalization | 0.59                   | 0.87                      | p=0.008             |
| Post-ED              | 0.57                   | 0.58                      | NS                  |
| Post-Costs           | \$11,874               | \$16,036                  | p=0.005             |




#### 1<sup>st</sup> Year CHF Program Results Admits





#### 1<sup>st</sup> Year CHF Program Results ER Visits

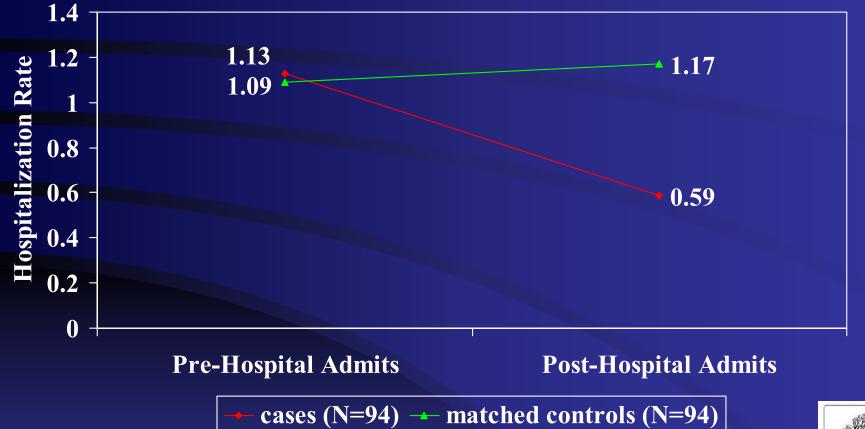


Intervention Group (N=94) - Concurrent Control Group (N=4606)



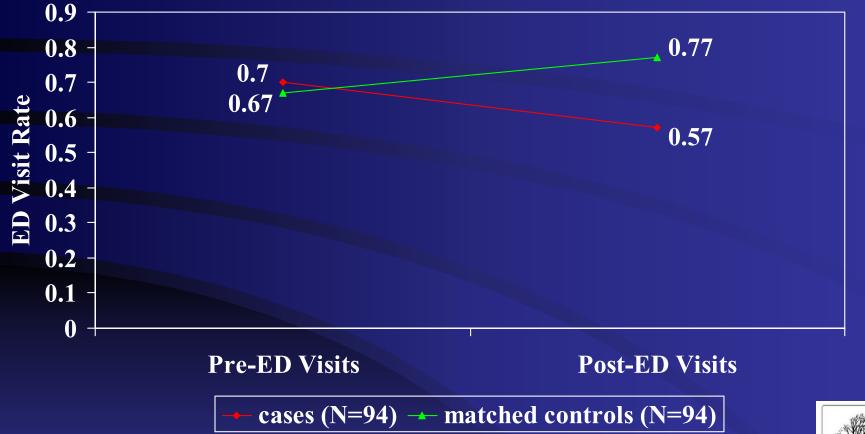
#### 1<sup>st</sup> Year CHF Program Results Costs




Intervention Group (N=94) -- Control Group (N=4606)

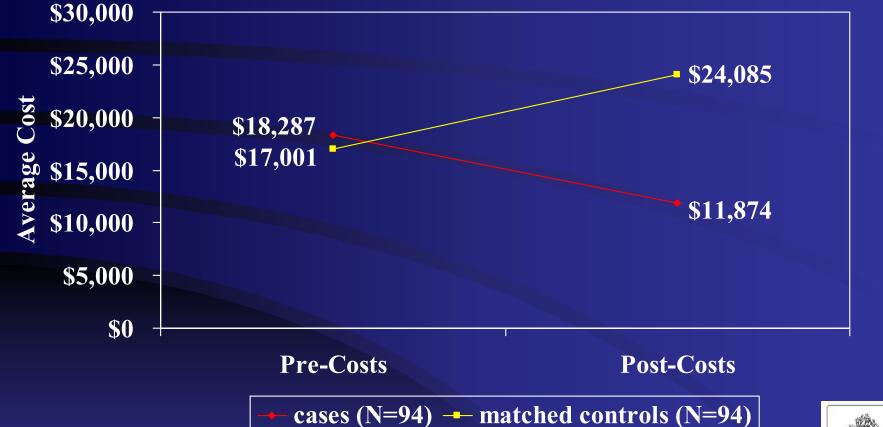


#### 1<sup>st</sup> Year CHF Program Results Propensity Scoring Method


|                      | Cases<br>(N=94) | Matched Controls<br>(N=94) | P(T<=t)<br>two-tail |
|----------------------|-----------------|----------------------------|---------------------|
| Propensity Score     | 0.061           | 0.062                      | NS                  |
| Age                  | 77.4            | 78.2                       | NS                  |
| % Female             | 0.51            | 0.51                       | NS                  |
| % Portland           | 0.17            | 0.17                       | NS                  |
| Pre-Hospitalization  | 1.13            | 1.09                       | NS                  |
| Pre-ED               | 0.70            | 0.67                       | NS                  |
| Pre-Costs            | \$18,287        | \$17,001                   | NS                  |
| Post-Hospitalization | 0.59            | 1.17                       | 0.005               |
| Post-ED              | 0.57            | 0.77                       | 0.026               |
| Post-Costs           | \$11,874        | \$24,085                   | 0.003               |

#### 1<sup>st</sup> Year CHF Program Results Propensity Scoring Method - Admits






#### 1<sup>st</sup> Year CHF Program Results Propensity Scoring Method – ED Visits



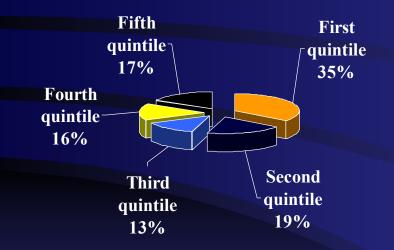


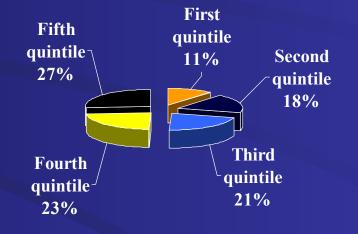
#### 1<sup>st</sup> Year CHF Program Results Propensity Scoring Method – Costs





#### **Regression** to the Mean


<u>Definition</u>: After the first of two related measurements has been made, the second is expected to be closer to the mean than the first.

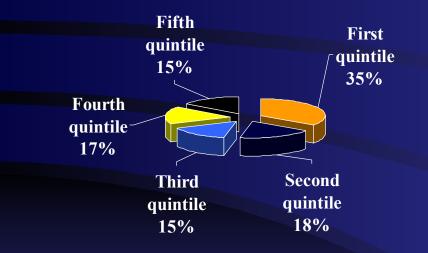


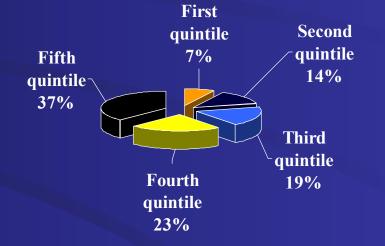

#### Regression to the Mean CAD

Where the 1st Quintile (N=749) Went In Year 2

Where the 5th Quintile (N=748) Went In Year 2






#### Regression to the Mean CHF

Where the 1st Quintile (N=523) Went In Year 2

Where the 5th Quintile (N=537) Went In Year 2

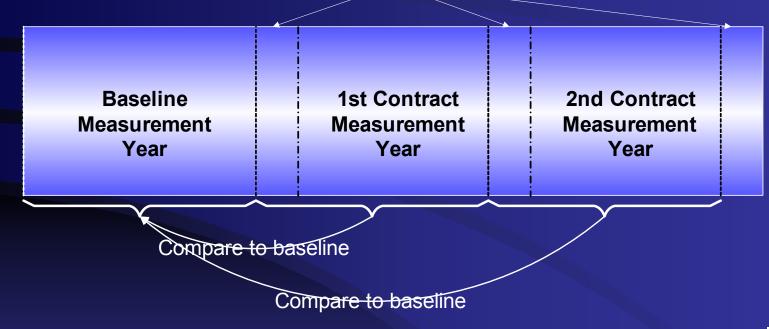






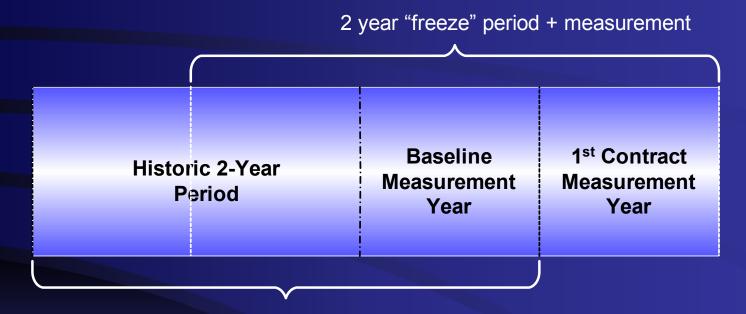
#### Regression to the Mean (cont')

Fix #1: Increase length of measurement periods


How: Controls for movement toward the mean across periods

Limitations: periods may not be long enough, availability of historic data




#### Regression to the Mean (cont') Currently-Used Method

Claims run-out periods





#### Regression to the Mean (cont') Valid Method (from Lewis presentation)



2 year "freeze" period + measurement



## Regression to the Mean (cont')

Fix #2: Time Series Analysis

How: Controls for movement across many periods (preferably > 50 observations)

Limitations: availability of historic data, change in collection methods



#### **Measurement Error**

Definition: Measurements of the same quantity on the same group of subjects will not always elicit the same results. This may be because of natural variation in the subject (or group), variation in the measurement process, or both (random vs. systematic error).



#### Measurement Error (cont')

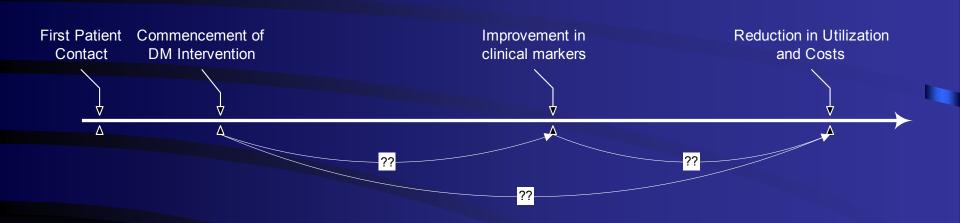
- Fix #1: Use all suitables in the analysis (to adjust for the "zeroes")
- Fix #2: Use identical data methods pre and post (like unit claims-to-claims comparison)
- Fix #3: Use utilization and quality measures instead of cost.



### **Alternative Designs**

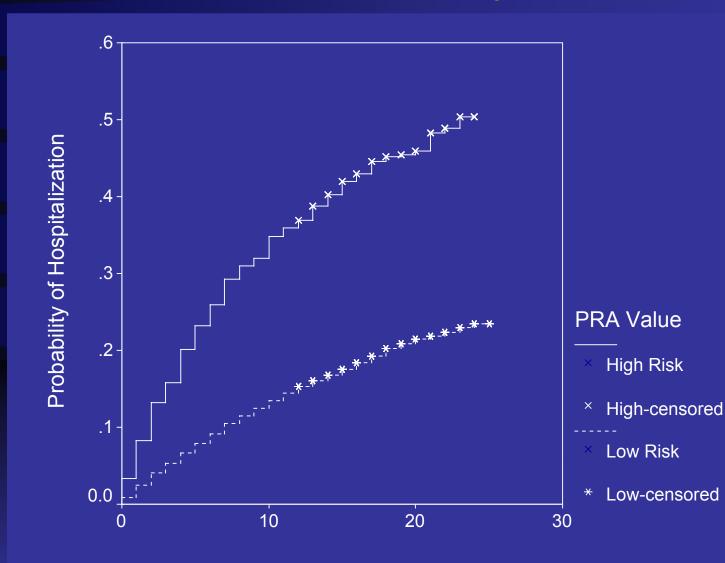
Survival Analysis
Time Series Analysis
Time-dependent Regression




#### Survival Analysis



Time to event analysis – longitudinal
Censoring
Allows for varying enrollment points




## Survival Analysis



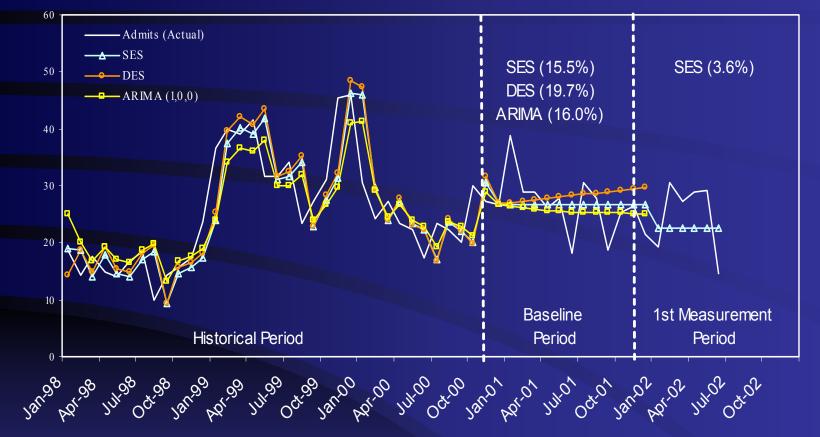


#### Survival Analysis





31


#### **Time Series Analysis**



Longitudinal analysis
Serial Dependency (autocorrelation)
Does not require explanatory variables
Controls for trend and seasonality
Can be used for forecasting



## Time Series Analysis (cont')



Month



## **Time-dependent Regression**

- Combines important elements of other models to create a new method, including variables such as:
  - Program tenure (censuring)
  - Seasonality (important for Medicare)
  - Can be used for forecasting





Admits/1000 (Tenure) — Admits/1000 (Month)

Simulated hospital admissions per thousand members based on program tenure and month-of-year (months 1-12 represent Jan – Dec of program year 1, and months 13-24 represent Jan – Dec of program year 2).



#### Conclusions

 Identify potential threats to validity <u>before</u> determining evaluation method

- Choose outcome variables that mitigate measurement bias (e.g. all identified members vs those with costs)
- There is no panacea! Use more than one design to validate results.



How does this presentation differ from what you just saw?

- Lewis approach is the only valid prepost population-based design in use today
- But valid / accurate. "Valid" just means adjustment for systematic error
- These methods reduce chances of *non-systematic error* to increase accuracy



#### References (1)

- Linden A, Adams J, Roberts N. An assessment of the total population approach for evaluating disease management program effectiveness. *Disease Management* 2003;6(2): 93-102.
- 2. Linden A, Adams J, Roberts N. Using propensity scores to construct comparable control groups for disease management program evaluation. *Disease Management and Health Outcomes Journal* (in print).
- 3. Linden A, Adams J, Roberts N. Evaluating disease management program effectiveness: An introduction to time series analysis. *Disease Management* 2003;6(4):243-255.
- 4. Linden A, Adams J, Roberts N. Evaluating disease management program effectiveness: An introduction to survival analysis. *Disease Management* 2004;7(2):XX-XX.



### References (2)

- Linden A, Adams J, Roberts N. Evaluation methods in disease management: determining program effectiveness. Position Paper for the Disease Management Association of America (DMAA). October 2003.
- 6. Linden A, Adams J, Roberts N. Using an empirical method for establishing clinical outcome targets in disease management programs. *Disease Management*. 2004;7(2):93-101.
- 7. Linden A, Roberts N. Disease management interventions: What's in the black box? *Disease Management*. 2004;7(4):XX-XX.
- 8. Linden A, Adams J, Roberts N. Evaluating disease management program effectiveness: An introduction to the bootstrap technique. *Disease Management and Health Outcomes Journal* (under review).



### References (3)

- 9. Linden A, Adams J, Roberts N. Generalizability of disease management program results: getting from here to there. *Managed Care Interface* 2004;(July):38-45.
- 10. Linden A, Roberts N, Keck K. The complete "how to" guide for selecting a disease management vendor. *Disease Management*. 2003;6(1):21-26.
- 11. Linden A, Adams J, Roberts N. Evaluating disease management program effectiveness adjusting for enrollment (tenure) and seasonality. *Research in Healthcare Financial Management*. 2004;9(1): XX-XX.
- 12. Linden A, Adams J, Roberts N. Strengthening the case for disease management effectiveness: unhiding the hidden bias. *J Clin Outcomes Manage* (under review).



#### **Software for DM Analyses**

- The analyses in this presentation used XLStat for Excel. This is an Excel add-in, similar to the data analysis package that comes built-in to the program.
- Therefore, users familiar with Excel will find this program easy to use without much instruction.



# **Questions?**

Ariel Linden, DrPH, MS ariellinden@yahoo.com

