Medicaid DM Programs: How to measure and improve success.

Disease Management Colloquium

June 28, 2004

Thomas W. Wilson, PhD, MPH, DrPH
Trajectory Healthcare, LLC
10663 Loveland-Madeira Rd, #210
Loveland, Ohio 45140
twilson@trajectory-inc.com
513.289.3743
Extension of ROI article

New Problems Faced by DM Medicaid.

- The magnitude of ROI will likely drop with the emergence of credible and valid methodologies.
 Source: Al Lewis, Disease Management Purchasing Consortium International, 6/27/04

- The Florida DM Medicaid Experience seems to bear this out.
 Source: http://www.oppaga.state.fl.us/reports/health/r04-34s.html

- As the DM movement evolves, it must be prepared to improve its’ value.
 How?
Solution:

Improvement Strategies

- **Choices:** Reduce Cost or Improve Impact.
- **What is can we correct?**
 - Better choice of the optimal population.
 - Reduce what we are doing that does not work.
 - Increase what we are not doing well that does work
- **How? #1: Ability to Distinguish what works from what does not work.**
 - *Rely on Evidence-based practices*
 - *Add to Evidence-based practices.*
- **How? #2: Hypothesis-driven Action**
 - *Intelligent Action*
ORGANIZATION

I) DEFINITION OF PRAGMATIC EPIDEMIOLOGY

II) IMPACT | CAUSALITY ASSESSMENT
- METRICS
- EQUIVALENCE
- COMPARABILITY

III) HYPOTHESIS-DRIVEN ACTION
- With and without strong EBM.
I) Definition
Pragmatic Epidemiology:
Epidemiology of Value

The *scientific* study of the distribution and determinants of health-related *value* in defined populations, and the application of this study to the control of health-related *value* problems.
“Value”: Operational Definition

Person/Population

Health

Economic

Perception
II) IMPACT | CAUSALITY ASSESSMENT
IMPACT

The Difference between the Intervention Group and the Reference Group*

Administrative Incidence (TM)

Percentage in Stratosphere (TM)

Patient Time Segments (30 days)

Reference (Expected)
Intervention (Actual)

Based on patent pending Trajectory® algorithms

*Assuming equivalence

© 2004 Thomas Wilson. Loveland, Ohio
All rights reserved
Page 10
R.O.I.

Impact minus cost of solutions
Value (Impact - Cost) Per Time Segment and Cumulative Program Value (ROI) over All Time Segments

Dollars

Time Segment 1-12 (30 days)

ROI*

Break Even Point

Based on patent pending Trajectory® algorithms

*Unadjusted for NPV

Program Value (Impact minus Cost) Cumulative Program Value

© 2004 Thomas Wilson, Loveland, Ohio
All rights reserved
Page 12
B) THE EXPECTED

Q: How do we credibly determine the “expected”?

A: We need an “equivalent” reference group
Many ways to answer this question
... some are very good, some are very bad.

- Patient’s experience last year?
- Participants compared to non-participants?
- Published literature (inferred reference)?
- External “matched” control group?
- Field-based randomized trial??
- Double-blind, randomized control trial
EQUIVALENCE OF POPULATIONS

Disease Management Population

Equivalence?

Reference Population
Intervention Pathway:
Metrics & The Scientific Equation: Cause & Effect (ad infinitum)

Type I
Program process metric

Type II
Proximate outcome metric

Type III
Ultimate outcome metric

Cause

Effect

Cause

Effect
METRICS: What is a Type I, Type II, and Type III Metric?

Type I: CAUSES
DM Program

Type II: PROXIMATE IMPACT
Screening, Compliance, etc.

Type III: ULTIMATE IMPACT
Health: Incidence, Prevalence, QALY, Biol.
Economic: Claims Payments, Admissions
Perception: Patient & Provider Satisfaction
Onset

Diagnosis/Incidence
(this can vary)

Primary Prevention
Immunization to prevent onset

Secondary Prevention
Screening to detect disease

Tertiary Prevention
Therapy to reduce pain and suffering

"Patient time™"
COMPARABILITY OF METRICS

Disease Management Population

Reference Population
EQUIVALENCE | IMPACT

Disease Management Population

Reference Group
B) Study Designs (selected)

I. Post-Only

II. Benchmark

III. Pre-Post Type Designs (Quasi-Experimental)

IV. Follow-up / Cohort
I. Post-Only

Where results of a panel are not compared to any reference group.

i. Patient Selection:
 - Population-based
 - Referral, Outlier, etc. based

What to watch out for: Design most likely to be misinterpreted if regression-to-the-mean and the “natural history of disease” are not taken into account. This is especially true on patients selected because they are outliers.
“How I Learned to Stop Worrying and Love Regression to the Mean”

High Cost Cohort in Index Month & Following Month:
Figure Illustrates Regression-to-the-Mean: Expected Random Effect and Actual Effects in Selected CCS Conditions

II. Benchmark

- A) Where results of a case series are compared to a national benchmark (e.g. HEDIS)

- B) Where case series (population and results) are compared with results, based upon an equivalent population, from a study from well-designed peer-reviewed journal.

Sources:

Benchmark (con’t)

- C) Predictive Modeling: Where case series (population and results) are compared with results that are “predicted” to occur from a predictive modeling algorithm based upon a “beta weights” from another population.

Sources:

III. Pre-Post (Quasi-Experimental)

Types:

a) **Classic Pre-Post**: results on same patients from a prior time period (“patient as their own control”).

b) **Time-series**: results on patients in multiple time periods prior to intervention compared to same patients in multiple time periods AFTER the intervention.

What to watch out for: “Lost to baseline.” Metric comparability. Natural history of disease could render the pre period a poor predictor of the post period in the patients studied.
Pre-Post Design:

Past is NOT Prologue: Another Situation where equivalence is not achieved (if you’re Red or Green)

Spurious Progression: Measured at low end of cycle in pre period and high end in post period

Spurious Regression: Measured at high end of cycle in pre period and low end in post period.
Time Series (multiple pre-post time segments)

Equivalence Assumption is problematic

Figure 2: Defined Population “A”: How the Pre-Period “Average” Trend Overestimates the Post-Period Trend in Newly Diagnosed Patients. Therefore, ROI is overestimated.
Prior Slide Legend

- The prior slide shows the percent of the defined population that are high cost (“The Tipping Point” or the “Stratospheres”™) in 30 day patient time segments.

- The highest point is the “administrative incidence”™-- this is the point at which each individual is initially identified with the condition (in this case, it is the first time the diagnosis for CHF appears in a calendar year).
 - Administrative incidence refers to two kinds of people:
 - 1) True incident cases (from the perspective of health)
 - 2) Unknown if case is incident or prevalent
 - This can be parsed out if we allow for a clinically relevant duration of time when the patient is “disease free” (ie. enrolled, but no claims-based evidence of disease).

- Before that identification point is the retrospective “Patient Time™” trend, after that point is the prospective “Patient Time” trend.
 - The prospective patient time trend represents a true prevalent cases.
Observational: Where DM program uses “naturally” occurring variation in “exposure” and observes of “outcomes” prospectively.

Experimental: Randomization by Group (Place or Time) or Individual

What to watch out for: Selection bias. Was the reference group equivalent to the intervention (exposed group) at the beginning and throughout the study? No issues with temporal ambiguity or ecological fallacy.
Follow-Up Design:
But are the two groups equivalent?

IMPACT
The Difference between the Intervention Group and the Reference Group*
Predictability

CHF Patient Time Trends: Six Times Segment Prior to Administrative Incidence and Eleven Patient Segment After AI (# based upon >100 individuals per each Patient Time Segment):
Dotted lines represent 99% confidence intervals around 2000 patient time trend
The prior slide shows the percent of the defined population that are high cost (“The Tipping Point” or the “Stratospheres™”) in 30 day patient time segments in 2000 and 2001.

This was done in a managed care population with no DM in either year.

The 2000 Patient Time™ pattern is used as “hypothetical” predictor of the 2001 Patient Time trend.

The results show that the prior trend was a good predictor of the post trend.
III) HYPOTHESIS-DRIVEN ACTION
What to Do Where Evidence-Based Medicine Doesn’t Lead?

“Estimates of the fraction of physician’s care decisions that are supported by unambiguous clinical trial evidence ranges from 11 percent to 65 percent depending on specialty and care setting.

A strong case can be made that these estimates are upper bound, since the studies focus on major decisions only and not the full range of care decisions—such as whether to hospitalize a patient or consult with another specialist – that are made in any complex treatment regimen.”

There’s H.O.P.E.™
Cholera & Dr. John Snow

- **Setting: Cholera Epidemic - 19th Century London**
 - "Evidence-based medicine" was not a guide
 - Agent (did not know what caused cholera)
 - Host (no anti-cholera drug)
 - Environment (maybe ...)

- **Study**
 - 1853, Dr. John Snow
 - Empirical-based medicine: Observational

- **Findings**
 - Numerous cases associated with the “Broad Street Pump”

- **Action**
 - Locking the pump

- **Implications**
 - Incomplete information. Yet, Intelligent & Effective Action
Current Example (real data)
Diabetes Ascertained by Either Primary Dx on Claim (n=20) or Self-Reported (n=70) [both were n=14]

Based on patent pending Trajectory® algorithms

N=197
Cost Trends over Cohort Time: Stratification based on Fluid and Electrolyte Disorders Category (CCS #55)

Based on patent pending Trajectory® algorithms

F&E = Yes (n=58) F&E = No (n=774) 55 & 158 (n=4)

© 2004 Thomas Wilson, Loveland, Ohio
All rights reserved
Page 40
Wrap-up

- Pragmatic Epidemiology and Principles of Causality
- Approaches for dealing with non-equivalence
- Approaches for efficient actions to reduce costs:
 - How do we “lock the pump” today?
 - How do we assess the effectiveness of our action? Can we really expect “certainty” in observational studies?
 - How do we improve to meet the new challenges facing DM?
References

The Pump

The John Snow Pub

Photo Credit: David Allison, Falling Leaves Press, 2002