
# What Will it Take for DM to Demonstrate an ROI?

Ariel Linden, DrPH, MS President, Linden Consulting Group www.LindenConsulting.org







# The Story Line

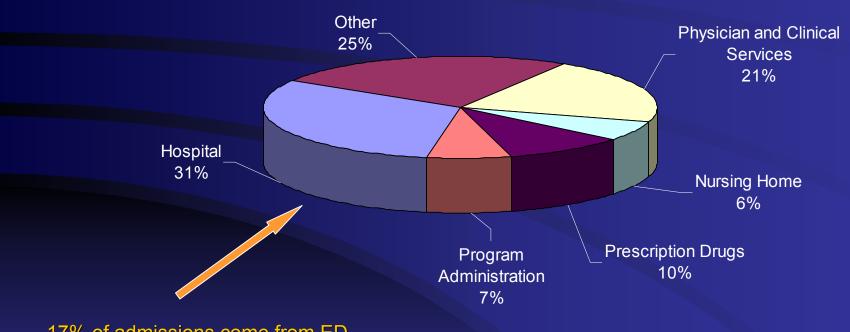
 DM is promoted as a major medical costsavings mechanism.

 Financial outcomes are typically measured in terms of ROI (\$ spent vs. \$ saved).

 "Cost trends" are used to compare actual to predicted (diseased vs. non-diseased)

 "The jury is still out" on whether DM is economically effective

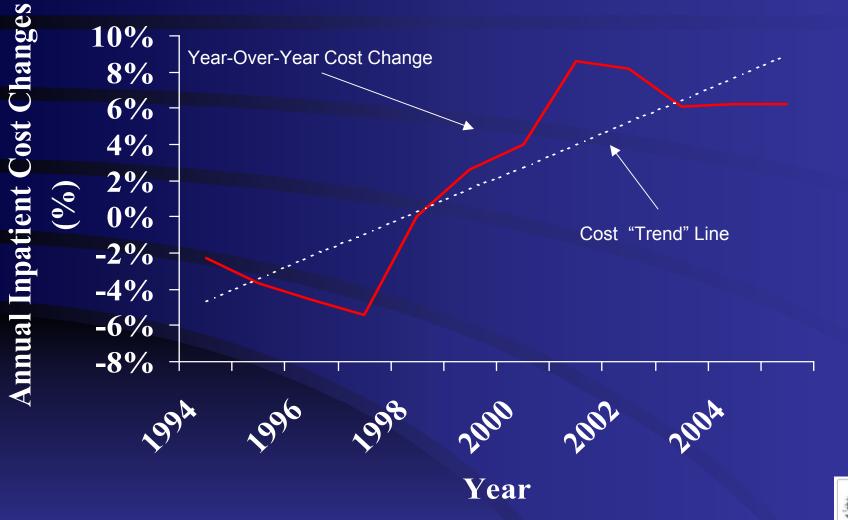



## Plot

- 1. Demonstrate why cost is NOT a good measure of economic success.
- 2. Provide a more suitable alternative.
- Demonstrate model to determine if there is sufficient opportunity to achieve economic savings upfront!

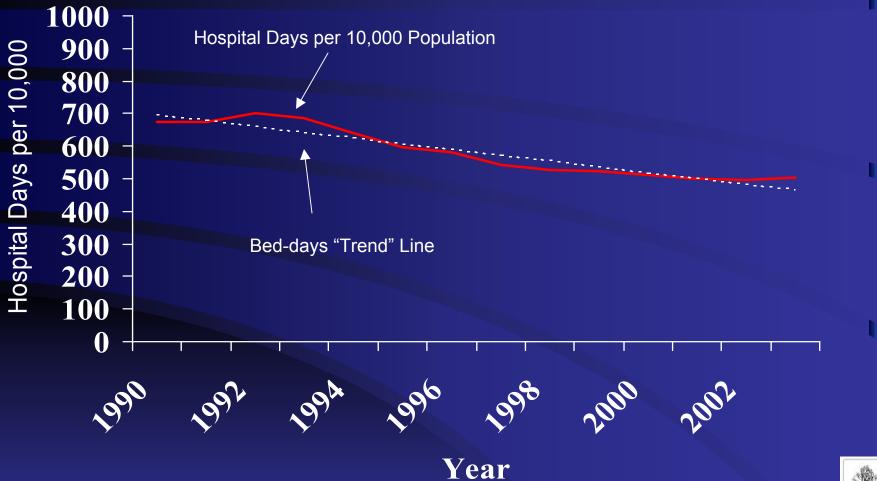


# Where is the Savings Opportunity?

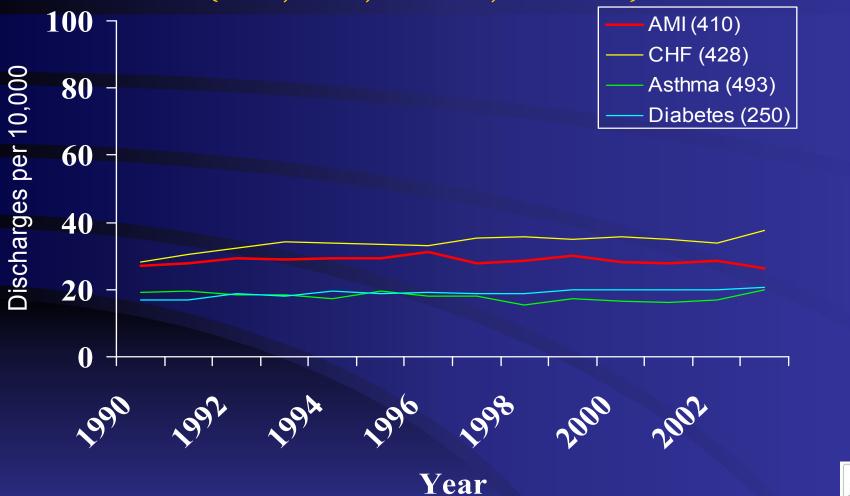

#### The Healthcare Dollar - 2004





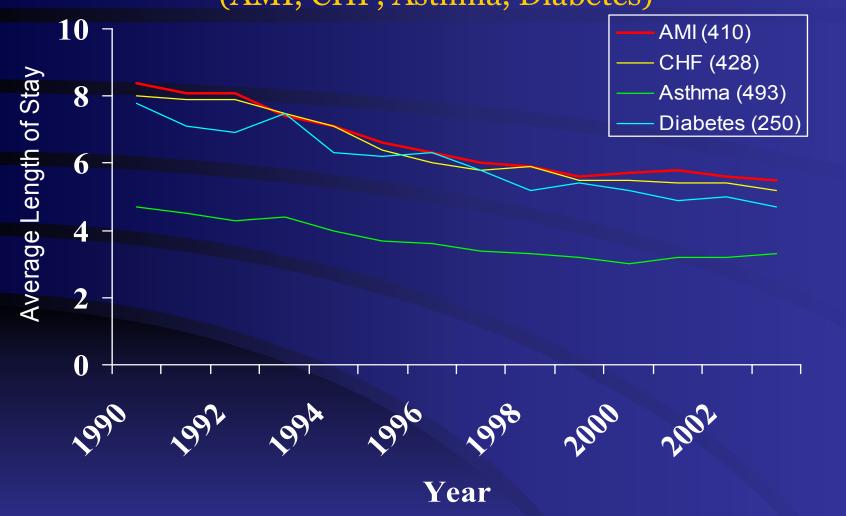

17% of admissions come from ED

### **Inpatient Cost Trends**



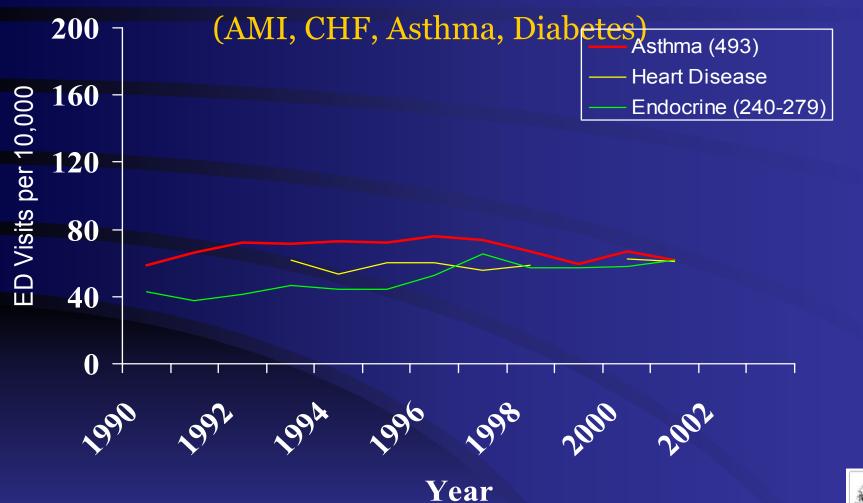

LCG

### Hospital Days Trend (AMI, CHF, Asthma, Diabetes)




### Hospital Discharge Trends (AMI, CHF, Asthma, Diabetes)




LCG

### ALOS Trends (AMI, CHF, Asthma, Diabetes)





## Emergency Department Trends





### So What Have We Learned?

- Hospital <u>costs</u> have <u>increased</u> over time;
- Hospital <u>days</u> have <u>decreased</u> over time,
  - Discharges have been flat
  - ALOS has decreased



### **Deductive Reasoning**

- Disproportionate increase in unit pricing
- DM cannot impact unit price of services
- DM can impact acute utilization
   Thus:
- Programs should be evaluated on acute utilization and not costs directly.



| Current Method (Scenario 1) |                                          |  |  |  |  |
|-----------------------------|------------------------------------------|--|--|--|--|
| Baseline:                   | line: 1000 admits X 5.0 ALOS X           |  |  |  |  |
|                             | \$1000 actual average day rate           |  |  |  |  |
|                             | = \$5,000,000                            |  |  |  |  |
| Year 1:                     | 1000 admits X 5.0 ALOS X                 |  |  |  |  |
|                             | \$1100 (estimated 10% increase in trend) |  |  |  |  |
|                             | = \$5,500,000                            |  |  |  |  |
| Actual                      | = \$5,200,000                            |  |  |  |  |
| Savings                     | = \$300,000                              |  |  |  |  |
|                             |                                          |  |  |  |  |



| Current Method (Scenario 2) |                                        |  |  |  |  |
|-----------------------------|----------------------------------------|--|--|--|--|
| Baseline:                   | 1000 admits X 5.0 ALOS X               |  |  |  |  |
|                             | \$1000 actual average day rate         |  |  |  |  |
|                             | = \$5,000,000                          |  |  |  |  |
| Year 1:                     | 1000 admits X 4.8 ALOS X               |  |  |  |  |
|                             | \$1100 estimated 10% increase in trend |  |  |  |  |
|                             | = \$5,280,000                          |  |  |  |  |
| Actual                      | = \$5,200,000                          |  |  |  |  |
| Savings                     | = \$80,000                             |  |  |  |  |



### **Alternative Method**

Measure admission and ED rates while holding unit prices constant: Baseline: 1000 admits X 5000 = 5,000,000Year 1: 900 admits X \$5000 = \$4,500,000 This controls for the confounding of unit pricing and secular decreases in ALOS (both beyond DM's purview)



### **Population vs. Diseased Cohort?** DM fees are typically PMPM not PDMPM

 Unsolved issues in the identification of diseased patients, migration, disenrollment, etc.



### **Disease Specific vs. Non Disease?**

- We would expect the intervention to decrease utilization in the targeted disease (primary outcome) and only then impact other non-specific outcomes.
  - "Therapeutic Specificity": it should not be assumed that an intervention targeting one disease will impact another.



Intervention Specificity Example: Diabetes management and heart disease

 Clinical trials have not yet shown that aggressive management of HbA1c in diabetics leads to statistical reductions in CV events.

 Intensive BP and lipid management is more cost effective than targeting HbA1c as a means of reducing CAD.



# Assessing Opportunity for DM

- Review historic acute utilization trends for admission and ED visit rates:
  - Are the rates trending up/down/flat?
  - Are the rates high enough to warrant an intervention?
- Perform a Number-Needed-to-Decrease (NND) analysis to determine ROI potential.



## NND Analysis (1)

### <u>Assumptions</u>

- Population Size = 100,000
- Discharge Rate = 1045 per 100,000
- ALOS = 4.8 days
- Hospital Day Rate = \$1000
- Cost per admit = \$4800
- Vendor fees = \$0.90 X 100,000 X 12 = \$1,080,000



## NND Analysis (2)

### To break-even:

 $\frac{\text{Vendor fees}}{\text{Cost/Admit}} = \frac{\$1,080,000}{\$4800} = 225$ 

225 admissions (from these 4 diseases) must be reduced in order to break even on fees.

Percent decrease from baseline =  $225 \div 1045 = 21.5\%$ 



## NND Analysis (3)

#### Table 1. Assume \$0.90 PMPM program fees

| Cost/day = \$1000 |     | Cost/day = \$2000 |            |     |            |  |
|-------------------|-----|-------------------|------------|-----|------------|--|
|                   | ROI | NND               | % Decrease | NND | % Decrease |  |
|                   | 1.0 | 225               | 21.5       | 113 | 10.8       |  |
|                   | 1.5 | 338               | 32.3       | 170 | 16.2       |  |
|                   | 2.0 | 450               | 43.0       | 226 | 21.6       |  |
|                   | 2.5 | 563               | 53.8       | 283 | 27.0       |  |
|                   | 3.0 | 675               | 64.5       | 339 | 32.4       |  |



# NND Analysis (4)

#### Table 2. Assume \$1.20 PMPM program fees

| Cost/day = \$1000 |     | /day = \$1000 | Cost/day = \$2000 |            |  |
|-------------------|-----|---------------|-------------------|------------|--|
| ROI               | NND | % Decrease    | NND               | % Decrease |  |
| 1.0               | 300 | 28.7          | 150               | 14.4       |  |
| 1.5               | 450 | 43.1          | 225               | 21.5       |  |
| 2.0               | 600 | 57.4          | 300               | 28.7       |  |
| 2.5               | 750 | 71.8          | 375               | 35.9       |  |
| 3.0               | 900 | 86.1          | 450               | 43.1       |  |



### **First Set of Conclusions**

- Measuring cost directly does not "tease out" the program impact vs. unit pricing
- National data has shown flat admission rates and declining ALOS which raises the question of "opportunity"
- Using the population's data, an NND analysis should be conducted a-priori.



### Criticisms

- Measuring rates at the population level does not account for differential enrollment trends
- Reviewing disease-only hospitalization data disregards changes in acute utilization for comorbidities of the primary condition
- As a result, savings are underestimated



### NND in a Diabetic Population (1)

- Claims data from a medium-sized health plan were retrieved for the period between 2001 and 2004
- Diabetics in a health plan were identified retrospectively using HEDIS 2006 criteria
- Overall prevalence was 5%



## NND in a Diabetic Population (2)

Table 3. Characteristics of the diabetic cohort under study

|                     | Commercial<br>(77.8%) | Medicare (14.2%) | Medicaid<br>(8.0%) |  |
|---------------------|-----------------------|------------------|--------------------|--|
| Age                 | 48.9                  | 71.3             | 46.5               |  |
| Female (%)          | 59.8                  | 66.0             | 60.3               |  |
| Enrollment (months) | 25.0                  | 20.0             | 27.0               |  |
|                     |                       |                  |                    |  |



### NND in a Diabetic Population (3)

- Hospitalizations were categorized into 3 groups:
- Diabetes only
- Diabetes + Comorbities
- Diabetes + Comorbities + "Possibles"
   1150 primary codes were evaluated by an expert in field (Tom Biuso, MD, MBA)



## NND in a Diabetic Population (4)

**Table 4.** Break-even point for a diabetes disease management program

| Assumptions             | Diabetes<br>Only | Diabetes,<br>Comorbidities | Diabetes,<br>Comorb, Possibles |
|-------------------------|------------------|----------------------------|--------------------------------|
| Admits per 10,000       | 377              | 658                        | 1018                           |
| ALOS                    | 4.3              | 4.7                        | 4.5                            |
| Cost/Admit (\$2k/day)   | 8,600            | 9,400                      | 9,000                          |
| Program Fees (\$20/mo.) | \$2.4 M          | \$2.4 M                    | \$2.4 M                        |
| NND (break-even)        | 279              | 255                        | 267                            |
| % Reduction             | 74               | 39                         | 26                             |



## Second Set of Conclusions (1)

- Using a disease specific cohort elicits even more stringent performance requirements than at the population level for DM to break-even
- Expanding the diagnoses to include nearly everything related to the disease does not make life that much easier.



## Second Set of Conclusions (2)

- Fees are the only variable that can be manipulated. Thus more cost effective interventions should be considered to bring down costs.
- Alternate measures of economic effectiveness should be considered
- An NND analysis should be conducted using either the population or cohort.



### Health Researcher's Oath

I (state your name), hereby acknowledge that the methods presented herein do NOT solve every source of bias in the evaluation of DM program effectiveness and should not be construed as such.



### References

Linden A. What will it take for disease management to demonstrate a return on investment? New perspectives on an old theme. *Am J Manage Care* 2006;12(4):217-222.

Linden A, Biuso TJ. In search of financial savings from disease management: applying the number needed to decrease (NND) analysis to a diabetic population. Under Review





#### Ariel Linden, DrPH, MS Email: Lindena@Lindenconsulting.org

