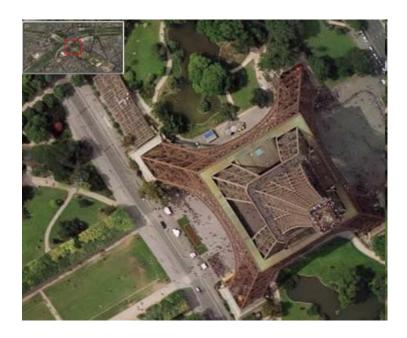
Initial Local Response and Implications for Public Health, Hospitals and EMS

Joseph Albanese, PhD

Radiation Biodosimetrist for the State of Connecticut Yale New Haven Center of Excellence for Bioterrorism and Response Yale University School of Medicine


March 3, 2010

Overview

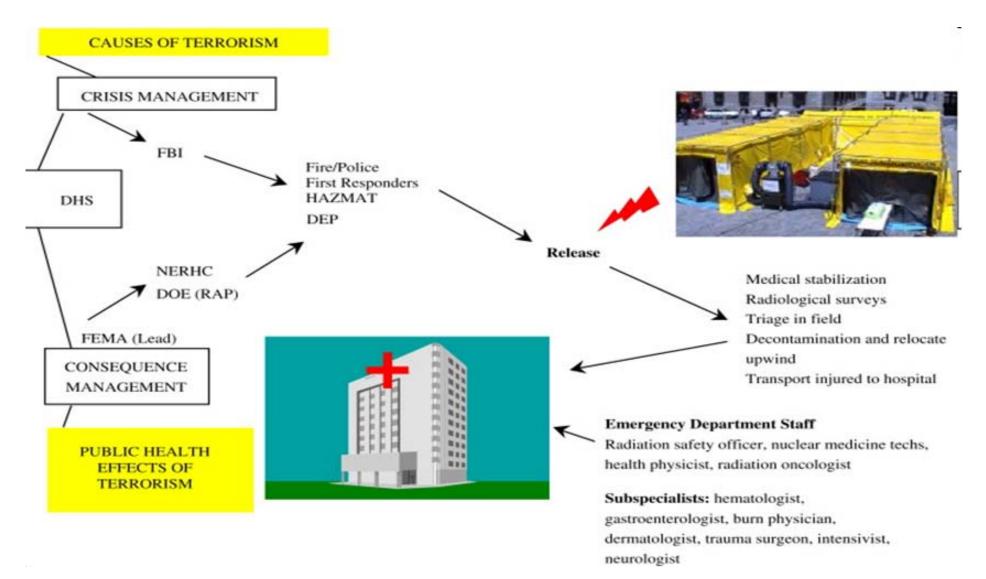
- Radiation Units and Dose Rate
- Local Response Structure to an IND Incident
- Response Philosophy
 - Protect the Population
 - Control zones
 - Patient care
 - Protect the Workforce
 - Radiation Exposure Limits
 - Personal Protection Equipment
- Hospital response
 - Medical and radiological triage
 - Decontamination
 - Personal Protection Equipment
- Therapeutic Intervention
 - Burns
 - Internal decontamination
 - Long-term treatment
- Role of Public Health Agencies

Radiation Units and Dose Rate

	Exposure	Absorbed Dose	Dose Equivalent
Common Units	roentgen (R)	radiation absorbed dose (rad)	roentgen equivalent man (rem)
SI Units	Coulomb/kilogram (C/kg)	gray (Gy)	sievert (Sv)

- Sublethal Doses: 100-250 rem
- Lethal Doses: 250 450 rem

Supralethal Doses: > 650 rem


Dose Rate

- radiation unit/time
- degree of hazard

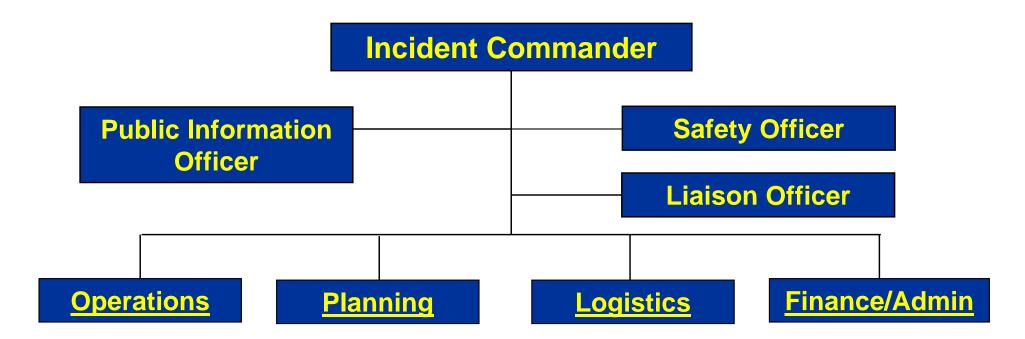
Local Response Structure to an IND Incident

Dainiak N, Berger P, Albanese J. 2007. Exp. Hematol. 35:17-23

Response Philosophy

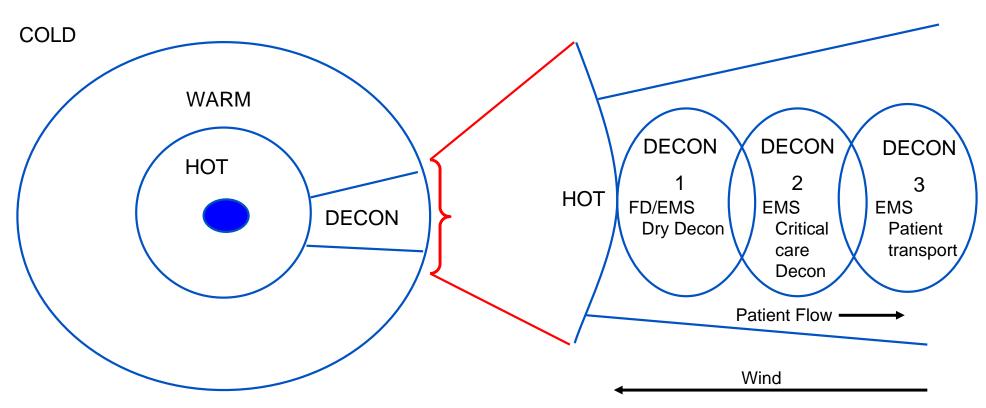
- Workforce Protection
- Control Incident Movement
- Protect Population
- Preserve Property

Initial Response Activities - Protect the Population


Actions should be taken quickly and modified as needed, when additional data become available

- Shelter-in-place
- Evacuation
- Administration of medical countermeasures (e.g., stable iodine)
- Decontamination
- Access control (Control Zones)
- Victim extraction

Establish an Incident Command Structure


Delineate Control Zones - Protect the Population

- No-Go Zone Very high radiation levels Life-saving unlikely
- Hot zone radiation hazard is present and only properly trained and authorized personnel may enter – potential for acute radiation syndrome for rescuers
- Warm Zone used to remove contamination from personnel and equipment and includes:
 - Decontamination corridor
 - Emergency decontamination
- Cold zone
 - Incident command post and other support areas

Patient Flow in Control Zones

Control zone set up will depend on:

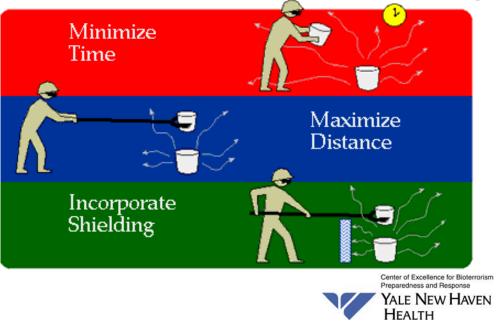
- -Magnitude of the blast
- –Population density

-Environmental factors (e.g., wind direction, day/night, etc.)

On-Scene Management of Patients

- Personal Protective Equipment
 - SCBA
 - Long-sleeve shirts or coats, gloves and nomex hoods
- Separate contaminated patients from non-contaminated
- Stabilize patient ABCs of resuscitation
- When possible masks should be used on patients to restrict inhalation or ingestion of radioactive debris
- Bandage wounds to prevent contamination
- Administer radiation countermeasures (if available)
- Prior to transport, contaminated patients should be wrapped in blankets to contain contamination
- Reuse contaminated ambulances for contaminated patients
- EMS personnel should be checked for contamination and decontaminated prior to leaving the scene

First Responders' Concerns


- Radiation Limits
 - Dose Rates
 - Exposure
 - When to Work
 - When to Leave
- Short-Term or Long- Term Incidents

Radiation Protection – Protect the Workforce

- ALARA As Low As Reasonably Achievable
- Fundamentals of Radiation Protection
 - Time Dose = Minimize time in a radioactive environment (dose rate x time)
 - Distance Maximize the distance from the radioactive environment (Inverse Square Law)
 - Shielding Incorporate shielding between the radioactive source and the worker

Radiation Exposure Limits

Activity	Dose Limit Recommendation	
Life-saving	Whole body dose should not exceed 50 rem (NCRP) •Voluntary basis only •Personnel must be fully aware of risk involved	
Protection of Property	Whole body dose should not exceed 10 rem (EPA)	
Recovery Efforts	Whole body dose should not exceed •5 rem for radiation workers •100 mrem for general public	

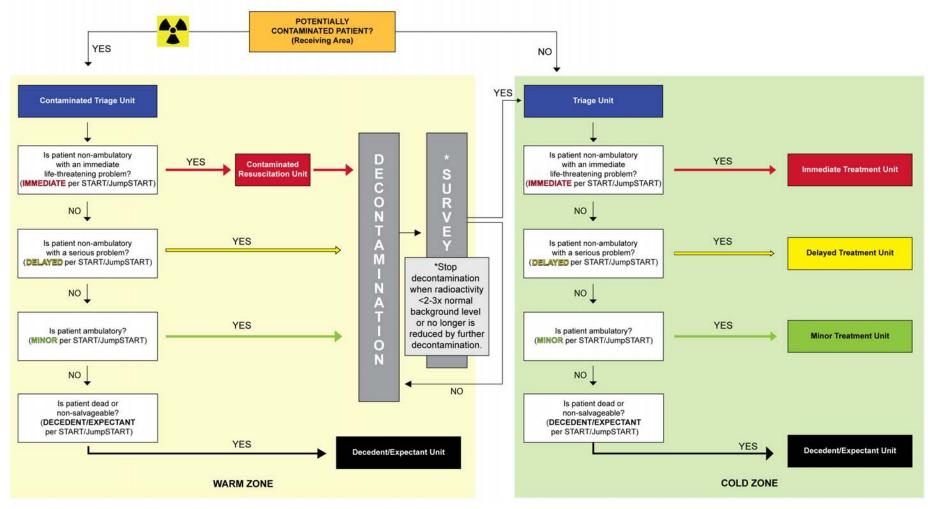
Radiological Detection - Protect the Workforce

Survey Meters

- "Geiger Counters"
- Detect and measure the presence of radiation


Dosimeters

- Measure personal radiation exposure
- Worn when providing care to potentially contaminated victims as part of PPE


Survey meters

Hospital Response

Establish receiving Areas - Conventional injuries first

Contaminated Patient Treatment Areas

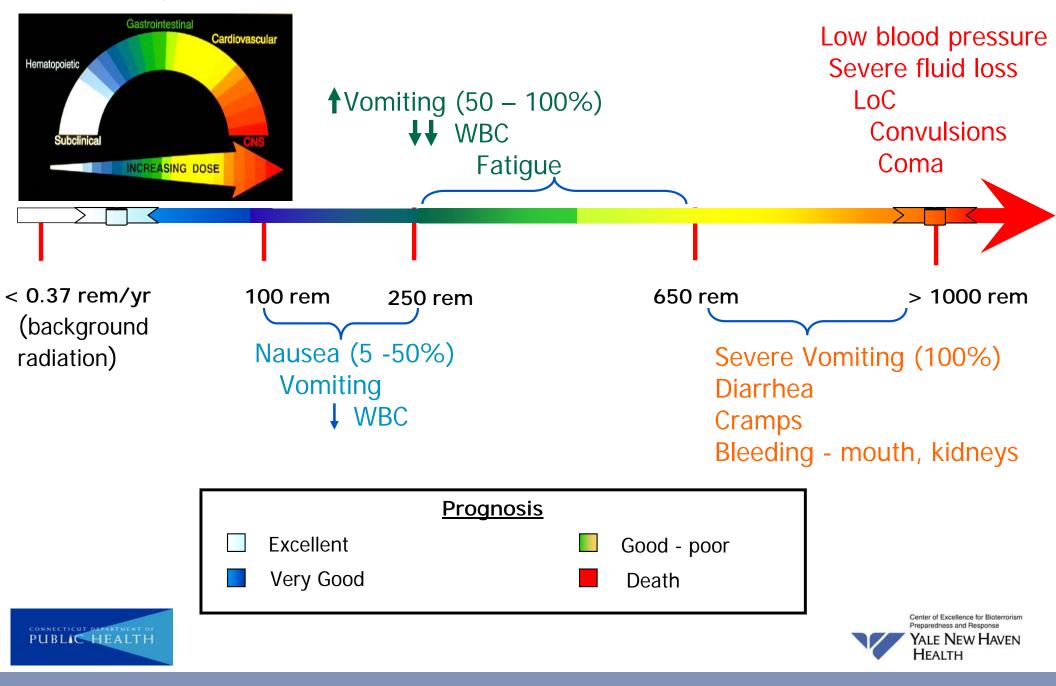
Non-Contaminated Patient Treatment Areas

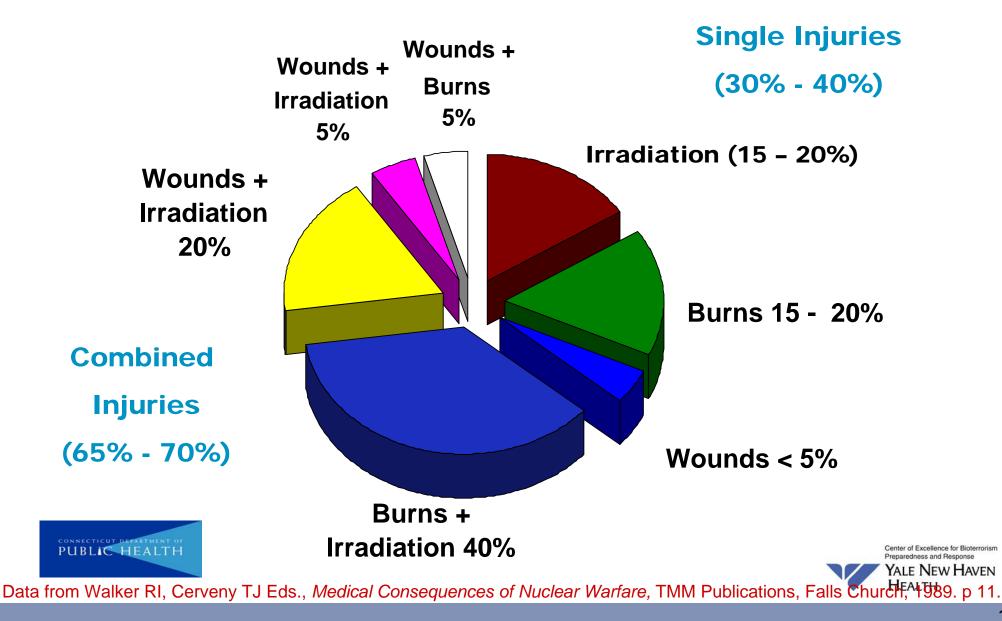
Personal Protective Equipment for Hospital Personnel

- Hospital Surgical Gown (waterproof)
- Cap, Face Shield, Booties (waterproof)
- Double Gloves (inner layer taped)
- Personal Dosimeters
- Plastic Bags
- Butcher Paper
- Large Garbage Cans
- Radiation Signs and Tape

In all past accidents, no health care worker has suffered adverse effects from treating contaminated patients.

Properly handled contaminated patients present minimal risk to responding health care providers.





Recognition of Acute Radiation Syndrome

Distribution of Injuries in a Nuclear Detonation

18

Priorities in Combined-Injury Triage- Radiation Doses

Conventional Triage	Changes in Expected Triage		
(No Radiation Exists)	Following Radiation Exposure		
	Onset	Onset	Onset
	>3 hr	1 – 3 hr	< 1 hr
	(<1.5Gy)	(1.5 – 4.5Gy)	(>4.5Gy)
Immediate	Immediate	Immediate	Expectant
Delayed	Delayed	Expectant	Expectant
Minimal	Minimal	Expectant	Expectant
Expectant	Expectant	Expectant	Expectant

Modified from Medical Consequences of Nuclear Warfare, 1989, p. 39

19

Primary Treatment Strategy

- Treat life-threatening trauma first
- Remove clothing (EMS ?) / Decontaminate
- Treat radiation effects
 - Burn care
 - Pharmaceutical therapies
- If surgery is needed
 - first 1-2 days OR
 - 50 days post-exposure

Decontamination

- Dry Decontamination
 - -Disrobing removes 80 90% of contaminants
- Shower with Soap/shampoo and warm water most effective
- Other Agents
 - Powder detergent, povidone iodine
- Avoid abrading skin

Causes of Burn Deaths

Direct result of accident	13%
Infection	45%
Organ system failure	41%
latrogenic intervention	1%

Use of antimicrobials

CONNECTICUT DEPARTMENT O

PUBLIC HEALTH

- Support of immune mechanisms
- Aggressive infection control
 - Elimination of infection reservoirs
 - Suppression of infection transfer

Roles and Responsibilities of Public Health Agencies

- Local, State and Federal Public Health agencies
 - Involvement will be dictated by size of the incident
 - Nuclear incidents mandates involvement of federal agencies (i.e., CDC, EPA, HHS)
- Obligations
 - Short-term (first 100 hr)
 - monitor workers' health and safety
 - provide safe shelters, healthy food and water supplies
 - coordinate sampling and laboratory analyses of samples
 - Long-term
 - conduct field investigations
 - monitor people for potential internal contamination or exposure to radiation
 - define criteria for entry and operations at the incident site
 - establish disease control and prevention measures.

Summary

- On-scene Response
 - Priorities: Protect Responders and the population
 - Shelter in place, evacuation, decontamination, control zones
 - Radiation limits for responders, PPE
- Hospital Response
 - Receiving areas
 - PPE
 - Medical and radiological triage
 - Decontamination
 - Distribution of injuries
 - Surge Capacity
- Short-term and long-term roles for Public Health Agencies

