Glen P. Mays, PhD Glen P. Mays, PhD Glen P. Mays, PhD Department of Health Policy and Management Fay W. BOOZMAN COLLEGE OF PUBLIC HEALTH INIVERSITY OF ARKANSAS FOR MEDICAL SCIENCES

mall Area Variation in the Pu

Health Response to H1

İC

Acknowledgements

- Funded by CDC grant to NC Preparedness & Emergency Response Research Center
- Also supported by RWJF Public Health PBRN Program
- Coauthors and Collaborators
 John Wayne, PhD, UAMS
 Cammie Marti, MPH, UAMS
 James Bellamy, MPH, UAMS
 Mary Davis, DrPH, NC Institute for Public Health
 Brittan Woods, MPH, NC Institute for Public Health
 Edward L. Baker, MD, MPH, NC Institute for Public Health
 North Carolina Division of Public Health
 Local health department leaders and staff

Background

- The 2009 national N1H1 outbreak provided a chance to explore variation in PH response
- The role of accreditation of particular interest promote standardization, interoperability, quality
- Two vehicles for study: PERRCs and PBRNs

Objectives

- Describe the nature and timing of the public health response to H1N1 outbreak in NC (and KY, MA, WA)
- Test for differences in local response between accredited and non-accredited health agencies
- Identify factors that facilitated and inhibited H1N1 response activities
- Use findings to create After Action Reports (AARs) and identify improvement areas for public health agencies

Accreditation in North Carolina

SOURCE: http://nciph.sph.unc.edu/accred/about_nclhda/progress.htm

Study Design & Methods

- Case-control study of 9 communities selected to contrast accreditation status
- Structured interviews capture key elements of the nature & timing of investigation & response
- Factor analysis used to group survey items into domains and construct composite measures of scope and timing
- Multivariate models used to test for differences by accreditation status, controlling for domain and community fixed effects

Analytic strategy

- Problem: small # communities, large # measures
- Desire to summarize patterns across measures, but also maximize power to detect differences across communities
- Bayesian Hierarchical Latent Variable Model use variability across measures & communities

Logit $(t_{qi}) = f$ (a_0 - intercept/baseline rate

 $a_q \theta_i$ - association between q and latent quality in comm.

 $a_i D_i$ - association between q and type of activity

 \boldsymbol{a}_A - association between q and accreditation status

 s_q - random error)

Landrum MB et al. 2000. Analytic methods for constructing cross-sectional profiles of health care providers. *Health Services & Outcomes Research Methodology* 1:23-47

Study Communities

NUMBER OF ITEMS

DOMAIN	SCOPE: was activity performed?	TIMING: Days since outbreak*
Planning	45	
Communication	105	14
Incident command	9	4
Investigation	21	6
Response and mitigation	27	13
Total	207	37

*Outbreak onset defined as 15April2009

Example Survey Items

<u>ltem</u>	Pct/Mean
Planning: local plan is in place for enforcing isolation and quarantine orders	89% scope
Communication: physician guidelines were disseminated about acquisition of supplies	44% scope
Incident command: local EOC was activated	43% scope
Investigation: days to initiation of hospital case-finding activities	16.5 timing
Response: health alert network notification	33% scope
Mitigation: contact notification initiated	67% scope

Scope and Timing of H1N1 Response Activities: Composites from All 9 Communities

Scope and Timing of H1N1 Response Activities: by Agency Accreditation Status

Multivariate-adjusted Scope of H1N1 Activities

Controlling for domain-level heterogeneity and community-level heterogeneity

Multivariate-adjusted Timing of H1N1 Activities

Controlling for domain-level heterogeneity and community-level heterogeneity

Conclusions and implications

- Wide variation in the scope and timing of local public health responses to H1N1
- Accredited agencies implemented a broader scope of responses
- Accredited agencies implemented IC and investigation activities more rapidly
- Accreditation may confer and/or detect enhanced capacity for H1N1 response

What's next

- Qualitative analyses to understand mechanisms behind the differences
- Multi-state analyses across NC, KY, MA, QA
- Larger-scale data collection in 2010 statewide in NC and propensity-matched comparison group

