Hospitals and Health Systems: Case Studies on Implementation of Large-Scale Systems

HIT Summit

October 22, 2004

Robert M. Kolodner, M.D.
Acting Chief Health Informatics Officer, VHA &
Acting Deputy CIO
Department of Veterans Affairs

A Brief Agenda

- Setting the Stage
 - Veterans Health Administration context
- VistA: VA's Current Health Information System (HIS)
 - CPRS: The clinician interface to the Electronic Health Records (EHR)
- VA's Large Scale Implementation Experience
 - Processes honed and repeated over 20+ years
 - CPRS as an example phased implementation
 - 4-step process
 - Critical ingredients
 - Clinician involvement before, during, after deployment
 - Continued application evolution
- Extent and Impact of Use Achieved
 - Clinical Impact the Raison D'Etre for Health IT
- HealtheVet: VA's Next Generation HIS & EHR

2004: Who is "VA"? Veterans Health Administration

- VHA is an Agency of the Department of Veterans Affairs
- Locations & Affiliations
 - ~ 1,300 Sites-of-Care
 - •Including 157 medical centers, ~ 850 clinics, long-term care, domiciliaries, home-care programs
 - Affiliations with 107 Academic Health Systems
 - Additional 25,000 affiliated MD's
 - Almost 80,000 trainees each year
 - •60% (70% MDs) US health professionals have some training in VA

2004: Who is "VA"? Veterans Health Administration

- Budget, Staff, & Patients
 - ~193,000 Employees (~15,000 Doctors, 56,000 Nurses, 33,000 AHP)
 - 6% decrease since 1995
 - -13,000 fewer employees than 1995
 - ~ \$27.4 Billion budget
 - 42% increase since 1995
 - -Flat at ~ \$19B from 1995 1999
 - 5.1 million patients, ~ 7.5 million enrollees
 - 104% increase in patients treated since 1995
 - -From 2.5 million patients / enrollees in 1995

Who Are VA Patients?

Older

49% over age 65

Sicker

- Compared to Age-Matched Americans
 - •3 Additional Non-Mental Health Diagnoses
 - •1 Additional Mental Health Diagnosis

Poorer

- ~ 70% with annual incomes < \$26,000
- ~ 40% with annual incomes < 16,000

Changing Demographics

- 4.5% female overall
 - Females: 22.5% of outpatients less than 50 years of age

Safety is Not Enough

- Patients don't seek care just to be safe, Safety is Fundamental
 - Goal: Avoid Getting It Wrong
- Safety & Effectiveness, To Close to Chasm
 - Expect effectiveness in maintaining & improving health, managing disease & distress
 - Goal: Getting It Right . . . Consistently
- Patient-Centered, Coordinated Care
 - Patient is locus of control
 - Seamless across environments
 - Integrates disease-specific, general health and social needs
 - Anticipates health trajectory and modifies risks, even before traditional risk factors manifest
 - Goal: Care that is safe, effective & predictive and delivered in the time, place & manner that the patient prefers
- Information Technologies & Care Coordination in Supporting These Goals

Success In Supporting Health Care Delivery For Millions Of Veterans

VistA is a success

- Built by "fire" of VHA collaboration
- Publicly owned by VA; plan to remain so for the next generation system
- Strong interest by public/private in using VistA

National software w/ local flexibility/innovation:

- Innovation developed locally & enterprise wide
- Standard packages distributed enterprise wide, e.g. latest version of CPRS

Initial system (1983-1996) was built around "dumb terminals"

- "Decentralized Hospital Computer Program (DHCP)"
- Steady deployment of packages and enhancements
- Applications separated out by Hospital/Clinic "Service"
- Simple "roll-and-scroll" screens

How it all Began.....

CPRS evolved from DHCP's text-based Order Entry/Results Reporting

- Initial design and subsequent enhancements guided by physicians and other direct health care providers
- "Visually" organizes and presents all relevant data on a patient in a way that easily supports clinical decision making

Phased implementation of CPRS

- Placed in "production" at first VA site in July 1996
- Began use at 3 more sites between August and December 1997
- Installed in "lead" site in each of VA's 22 regions by June 1998
- Implementation completed at all VA Medical Centers (>170) in December 1999

Insight on Successful Software Development

"Try, fail.
Try, fail.

Try, succeed, deploy."

William W. Stead, M.D.

Associate Vice Chancellor for Health Affairs & Professor of Medicine and Biomedical Informatics Vanderbilt University

Using CPRS as an example...

- Step 1: Software application planning and design
 - Involved diverse group of providers to determine critical features and prioritize minimum set for Version 1
 - Iterative development with periodic reviews by these
 Subject Matter Experts
 - More recently made pre-release software available for testing/use/feedback by end users attending national VA IT meetings
 - Identify Implementation Manager for national roll-out

Step 2: Install at 1st Site – Alpha site

- Small number of users (early adopters) at a single site
 - Supported by relatively high number of national implementation staff and application developers as well as local support staff
 - •Install and run in a "mirrored" test system on site, then move to "production"
 - Apply new configurations that tailor the new application to clinical needs and to improve response time
 - Rapid turn-around of minor software code changes
- Expand the users and identify additional configurations necessary to support broader user base (new clinical settings and wider level of user expertise)
- Goal of steady increase in basic use of the software
 - Log on and use of data retrieval capabilities
 - Entry of some simple, structured information
 - Some more demanding features (text entry) may be available but used only by a few clinicians

Step 3a: Implement at 2nd site – 1st Beta site

- -Lower level of extra support than at alpha site
 - •Code changes limited only to "bug" fixes and "show stoppers" identified at this 2nd site
- Confirm configurations and strategies
- Identify differences (variations or additional configurations needed) from initial site
- Test out training materials and methods
 - Refine based on results

Step 3b: Implement at 1-3 more Beta sites

 Progressively less extra support and more use of standard training methods

- Step 4: Draw up and follow timetable for progressive national roll-out
 - Several models used for different applications:
 - Establish a lead site in each "region" (VISN)
 - Train regional staff as "experts" in the application implementation & configuration
 - Launch separate, parallel installation activities in each region, using the lead site staff to support the newer sites in their region
 - Implement groups of sites across the country together in "waves"
 - Release software, training material with a target completion date and have every site implement on its own schedule

What Else is Needed For VA Implementations To Succeed

- The "Secret" Ingredients
 - Leverage VA model of "Super users" and Clinical Application Coordinators (CACs)
 - Initial implementation of major new applications often requires
 - Intense individual training
 - Round-the-clock, on site support at each local facility
 - Conduct national support calls involving the CACs, the National Implementation Manager, and, occasionally, the developers
 - Multi-tiered user support
 - Users to the facility Super Users and CACs
 - CACs to the local IT staff
 - Informal networking among CACs with their peers via email/messaging systems
 - Local IT staff and CACs to the national help desk
 - National help desk to the developers
- None of this can happen without management support and a show of solidarity during implementation.

Guidance for IT Development Staff Who Work With Clinicians

"If you give me what I tell you I want, then I'll tell you what I really want (and actually need)."

It's NOT "scope creep;" it's actually part of the process of refining what will work in a clinical setting.

Usability testing with a plan for iterative cycles of design need to be built into the plan.

The CPRS Evolution Continued....

VA Clinicians guided further rapid enhancements

1997

- Began "Camp CPRS" is an annual conference & training session
 - Designed to prepare VISN CPRS Key Site personnel for VistA CPRS
 - Five attendees from each CPRS Key Site.
 - 1 Key Site Project Manager
 - 1 Clinical Champion
 - 1 Clinical Application Coordinator
 - •1 IT Support Person
 - 1 Pharmacist

2000

- CPRS GUI Version 14 Graphical User Interface improved accessibility to online clinical information and results via integration with:
 - Enhanced online ordering capabilities
 - Display of related textual and graphical clinical images simultaneously
 - Provided access to clinical information from other VAMC sites through Health Summaries via Remote Data Views

The Evolution Continued....,

2001

- VISTA Imaging V. 2.5 workstation software synchronizes with CPRS
- Images and scanned documents are captured and attached to progress notes (DICOM-standard)
- CPRS GUI Version 16 Released enhanced "Remote Data View" functionality for CPRS users to more easily view consolidated data from multiple VHA facilities across the country

2002

 Federal Health Information Exchange (FHIE) provides the first-ever interagency system with transfer of clinical data from DoD to VA on service members at the time of their separation

2004

- "Camp CPRS" renamed to VistA eHealth University "VeHU"
 - Over 175 Sessions (60 Hands-On) on clinical software functionality
 - Over 1,450 physicians, nurses, pharmacists, clinical informatics support personnel and health information managers attended

Help at the Elbow

Supporting the Clinical-Technical Interface

- Role of 24/7 "Clinically Savvy" support
- Tracking Tools to report errors and desired enhancements
- Simplicity of using a closed system as a test bed
- National work groups are mirrored locally and ensure clinical participation in future development
- House staff become the critical mass to get everyone on board – keyboard/mouse is their primary method for data entry in all other parts of their lives

Where are we Now!!

VistA

Every VA Medical Center has Electronic Health Records!

And VistA Is Actively Used... Some National VistA Statistics (Total / Daily)

Number of Documents

(Progress Notes, Discharge Summaries, Reports)

- -533,000,000 / >510,000
- Number of orders
 - -1.14 Billion / >860,000
- Number of Images
 - $-197,000,000 / \sim 340,000$
- Number of Medications Administered with BCMA
 - -500,000,000 / >580,000

Chart Metaphor,

VistA

g Text and Images

Clinical Reminders

Contemporary Expression of Practice Guidelines

- Time & Context Sensitive
- Reduce Negative Variation
- CreateStandard Data
- Acquire health data beyond care delivered in VA

Performance Measurement Setting the U.S. Benchmark for 18 Comparable Indicators

Clinical Indicator	VA 2003	Medicare 03	Best Not VA or Medicare
Advised Tobacco Cessation (VA x3, others x1)	75	62	68 (NCQA 2002)
Beta Blocker after MI	98	93	94 (NCQA 2002)
Breast Cancer Screening	84	75	75 (NCQA 2002)
Cervical Cancer Screening	90	62	81 (NCQA 2002)
Cholesterol Screening (all pts)	91	NA	73 (BRFSS 2001)
Cholesterol Screening (post MI)	94	78	79 (NCQA 2002)
LDL Cholesterol <130 post MI	78	62	61 (NCQA 2002)
Colorectal Cancer Screening	67	NA	49 (BRFSS 2002)
Diabetes Hgb A1c checked past year	94	85	83 (NCQA 2002)
Diabetes Hgb A1c > 9.5 (lower is better)	15	NA	34 (NCQA 2002)
Diabetes LDL Measured	95	88	85 (NCQA 2002)
Diabetes LDL < 130	77	63	55 (NCQA 2002)
Diabetes Eye Exam	75	68	52 (NCQA 2002)
Diabetes Kidney Function	70	57	52 (NCQA 2002)
Hypertension: BP ≤ 140/90	68	57	58 (NCQA 2002)
Influenza Immunization	76	Р	68 (BRFSS 2002)
Pneumocooccal Immunization	90	Р	63 (BRFSS 2002)
Mental Health F/U 30 D post D/C	77	61	74 (NCQA 2002)

Online Demo of CPRS

 Try a working copy of VA's Computerized Patient Record System (CPRS) at

www.va.gov/cprsdemo

- HealtheVet-VistA is a modernization effort that includes:
 - Systems Platform
 - Software Design
 - Development Methodology
- Based on state-of-the-art technology
- Business process re-engineering

- Moves from facility-centric to person/data-centric
 - Uses national, person-focused health data repository for production & management/analysis/research
- Builds on, enhances & utilizes VistA
 - Moves from legacy VistA to HealtheVet-Vista
- Uses best, appropriate modern technology
 - Programming, software, hardware, networking
- Standardizes the "core" applications
 - Provides processes for local enhancements beyond the "core"
- Standardizes data & communications