Linking Incomes to Outcomes

Did You Really Get What They Said You Got?

Michael Pine, M.D., M.B.A.

Michael Pine and Associates, Inc.
(773) 643-1700
mpine@consultmpa.com
Overview

- Creating a Value-Driven Health Care Market
- Affordable Data We Can Believe In
- Comparative Performance of Alternative Data Sets
- From Information to Understanding to Action
- Accountability in a Value-Driven Market
Creating a Value-Driven Health Care Market
Creating a Value-Driven Health Care Market
Managing Seven Essential Rs

- **Risks**
- **Dynamic Processes**
- **Resources, Roles & Relationships**
- **Rewards**
- **Static Structures**
- **Responsibilities**

ADVERSE OUTCOMES IN PERCENT
- 5%
- 10%
- 15%
- 20%
- 25%
- 30%
- 35%
- 40%

- Predicted
- Observed

Characteristics of a Value-Driven Market

- Aligns Risks and Responsibilities
- Links Results and Rewards
- Balances Quality and Cost
- Combines Individual Choice and Market Discipline
- Provides Accurate, Relevant Information
- Holds All Participants Accountable
Accountability and Performance Measures

Accountability

- Requires Measures
- Invites Authority

Roles

- Conveys Authority
- Defines

Responsibility

- Assigns
- Requires Accountability and Performance Measures
Linking Data, Decisions, and Accountability

Data

- Requires

Evaluation

- Invite

Risk-Adjustment
Mutes
Extraneous
Influences

- Guide

Understanding

- Supports

Information

- Provides

Decisions

- Invites
Affordable Data
We Can Believe In
Data for Monitoring Clinical Performance

◆ Claims Data
 • HCFA Mortality Reports
 • HealthGrades.com
 • HCUP Inpatient Quality and Patient Safety Indicators

◆ Clinical Data
 • APACHE
 • Pennsylvania Health Care Cost Containment Council
 • Cleveland Health Quality Choice
 • Specialty Society Registries (e.g., STS, ACC)
Claims Data Versus Clinical Data

Data Is the Foundation for:
- Public Reporting
- Performance-Based Reimbursement
- Quality Improvement Initiatives

Must Balance the Need for:
- Accurate Measurement of Clinical Performance
- Ease and Cost of Data Collection
Relative Ease of Data Collection

- Standard Claims
- Numerical Laboratory
- Vital Signs
- Other Clinical Data

Data Collection

Manual

Automated

Claims Data

Clinical Data
Efficient Use of Clinical Data

Analytic Power

<table>
<thead>
<tr>
<th>Cost to Collect</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enhancing Claims Data

- Present-on-Admission Coding
 - Mayo Clinic
 - New York State’s SPARCS Database
 - California’s OSHPD Database
 - UB-04
 - CMS’s New Coding Requirements

- Numerical Laboratory Data
 - Michael Pine and Associates
 - Agency for Healthcare Research and Quality (AHRQ)

- AHRQ’s New Hybrid Database Demonstrations
Creating a Hybrid Database

Clinical Data
- Other Clinical Data
- Vital Signs
- Numerical Laboratory

Claims Data
- Present-on-Admission
- Standard Claims

Hybrid Data
Potential Benefits of a Hybrid Database

- Explicitly Distinguish Between
 - Comorbidities That Are Present on Admission
 - Complications That Occur During Hospitalization

- Provide Objective Clinical Data
 - Validate the Subjective Assignment of Diagnoses
 - Aid in Defining the Severity of Diagnosed Conditions
 - Aid in Delineating Underlying Pathophysiology
Comparative Performance of Alternative Data Sets
Sources of Data for Analysis

- 188 Pennsylvania Hospitals for Primary Analyses
 - Claims Data for Discharges from 7/00 to 6/03
 - Corresponding Atlas™ Clinical Data
 - Abstracted from Medical Records
 - Hospital Day Recorded for Each Data Element

- New York and California Claims Data
 - Identify Potentially Problematic Risk Factors
 - Assess Effect of Improperly Designated Complications
Inpatient Quality Indicators (Mortality)

- Medical Conditions
 - Acute Myocardial Infarction
 - Cerebrovascular Accident
 - Congestive Heart Failure
 - Gastrointestinal Hemorrhage
 - Pneumonia

- Surgical Procedures
 - Abdominal Aortic Aneurysm Repair
 - Coronary Artery Bypass Graft Surgery
 - Craniotomy
Patient Safety Indicators (Complications)

- Elective Surgical Procedures

- Complications
 - Physiologic / Metabolic Abnormalities
 - Pulmonary Embolus / Deep Vein Thrombosis
 - Sepsis
 - Respiratory Failure
Data Used in CLAIMS Models

- Age and Sex
- Principal Diagnosis
- Secondary Diagnoses
 - Chronic Conditions
 - Conditions Generally Present on Admission
- Selected Surgical Procedures
Data Used in POA and HYBRID Models

POA Models
- All Data Used in CLAIMS Models
- Additional Secondary Diagnoses
 - Frequently Hospital-Acquired
 - Used When Clinical Data Establish Presence on Admission

HYBRID Models
- All Data Used in POA Models
- Numerical Laboratory Data
 - Routine Chemistry, Hematology, and Blood Gas Analyses
 - Available in Electronic Form from Most Hospitals

Data Used in CLINICAL Models

- All Data Used in HYBRID Models
- Vital Signs
- Laboratory Data Not in HYBRID Models
e.g., bacteriological analyses, cardiac ejection fraction
- Key Clinical Findings from Medical Records
e.g., immunocompromised, lethargic
- Composite Clinical Scores
e.g., ASA Classification, Glasgow Coma Score
Bias Due to Suboptimal Data

Measured Performance

- Good
- Average
- Poor

Bias

- Problematic
- OK
- Problematic

Bias Due to Suboptimal Data (Mortality)
Bias Due to Suboptimal Data (Complications)
Bias in Measurement of Complications

- Observed vs Predicted Rates of True Complications
- Bias Due to Failure to Risk-Adjust True Complication Rates
- Bias Due to Misclassifying Comorbidities As Complications
Numerical Laboratory Data

- **22 Tests Enter At Least 1 Model**
- **14 of These Tests Enter 4 or More Models**

<table>
<thead>
<tr>
<th>Test</th>
<th>Model Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>11</td>
</tr>
<tr>
<td>Prothrombin Time</td>
<td>10</td>
</tr>
<tr>
<td>Sodium</td>
<td>9</td>
</tr>
<tr>
<td>White Blood Count</td>
<td>9</td>
</tr>
<tr>
<td>Blood Urea Nitrogen</td>
<td>8</td>
</tr>
<tr>
<td>pO₂</td>
<td>8</td>
</tr>
<tr>
<td>Potassium</td>
<td>7</td>
</tr>
<tr>
<td>SGOT</td>
<td>7</td>
</tr>
<tr>
<td>Platelet Count</td>
<td>7</td>
</tr>
<tr>
<td>Albumin</td>
<td>5</td>
</tr>
<tr>
<td>pCO₂</td>
<td>4</td>
</tr>
<tr>
<td>Glucose</td>
<td>4</td>
</tr>
<tr>
<td>Creatinine</td>
<td>4</td>
</tr>
<tr>
<td>CPK-MB</td>
<td>4</td>
</tr>
</tbody>
</table>
Vital Signs, Other Lab Data, Composite Scores

- All Vital Signs Enter 4 or More Models
 - Pulse (8)
 - Temperature (6)
 - Blood Pressure (6)
 - Respirations (5)

- Culture Results Enter 2 Models

- Ejection Fraction Enters 2 Models

- Both Composite Scores Enter 4 or More Models
 - ASA Classification (6)
 - Glasgow Coma Score (4)
Abstracted Key Clinical Findings

- 35 Clinical Findings Enter At Least 1 Model
- Only 3 of These Enter More Than 2 Models
 - Coma (6)
 - Severe Malnutrition (4)
 - Immunosuppressed (4)
- 14 Have Corresponding ICD-9-CM Codes
e.g., coma, severe malnutrition
- Coding Regulations Limit Utility of Claims Data
The Bottom Line

Claims Data Enhanced with Present-on-Admission Modifiers and Numerical Lab Data Can Support Accurate Performance Assessment
From Information to Understanding to Action
From Information to Understanding to Action

Information ➔
Knowledge ➔
Explanation ➔

Understanding ➔ Motivation ➔ Action

Three Barriers to Effective Decision Making

- Inconsistent Reporting of Complications
- Dissociation of Services and Clinical Benefits
- Inability to Relate Outcomes to Processes of Care
Coding Hospital-Acquired Complications

◆ Potential Barriers to Accurate Coding
 • Expertise and Teamwork Required for Accurate Coding
 • Difficulty Achieving Consistency in Reporting
 • Benefits to Hospitals of Not Coding Complications

◆ Consequences of Inconsistent Coding
 • Affects Comparative Assessments of Clinical Quality
 • Affects Reimbursement

◆ Detection of Coding Errors
 • Chart Reviews Are Inefficient and Costly
 • Well-Designed Screens Can Detect Problems Efficiently
Screens for Correct Coding of Complications

◆ Types of Admissions Screened
 • Admissions for High-Risk Medical Conditions
 • Admissions for Elective Surgical Procedures
 • Admissions for Childbirth

◆ Nature of Screens
 • Coding of Chronic Conditions
 • Without Acute Component
 • With Acute Component
 • Coding of Conditions That Often Are Hospital-Acquired
 • Relation of Mortality Rates to When Condition Occurred
 • Relation of Coded Complications to Lengths of Stay
 • Internal Consistency of Obstetrical Coding
Risk-Adjusted Post-Operative Lengths of Stay
All Live Discharges

Risk-Adjusted Post-Operative Lengths of Stay
Live Discharges without Reported Complications

Distribution of Hospital POA Coding Scores

<table>
<thead>
<tr>
<th>Score</th>
<th>Hospitals (#)</th>
<th>Hospitals (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>90%</td>
<td>65</td>
<td>39.4%</td>
</tr>
<tr>
<td>>80% to 90%</td>
<td>41</td>
<td>24.8%</td>
</tr>
<tr>
<td>>70% to 80%</td>
<td>26</td>
<td>15.8%</td>
</tr>
<tr>
<td>>60% to 70%</td>
<td>19</td>
<td>11.5%</td>
</tr>
<tr>
<td>60% or lower</td>
<td>14</td>
<td>8.5%</td>
</tr>
<tr>
<td>Total Scored</td>
<td>165</td>
<td>100%</td>
</tr>
<tr>
<td>>10% Unknown</td>
<td>22</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Linking Results and Rewards

Patient (Clinical) → Healthcare Services → Benefits (Results)

Structure

Payment (Reward) → Costs (Results)

Pricing Fragmented Components of Care

Fragmented Services

- Process A
 - $A

- Process B
 - $B

- Process C
 - $C

Structure

Patient (Clinical)

Payment

Benefits (Results)

Costs (Results)
Components of an Episode of Care

- Precipitating Event (Clinical Risk)
- Care
- Outcome (Benefit)
Reimbursement for Episodes of Care

- Risk of Occurrence
- New Health Event
- Clinical Risk
- Premium
- Payment (Reward)
- Benefits (Results)
- Costs (Results)
- Episode of Care
- Healthcare Services
- Structure

Services Associated with an Episode of Care

- Required Services
- Individualized Services
Costs of Alternative Practice Patterns

- **Inefficient Care**
- **Ineffective Care**
- **Optimum Routine Care**
- **Care of Associated Adverse Outcomes**

Payment in a Value-Driven Market

- **Insurance for Risk of Occurrence:**
 - Capitation: By Beneficiary

- **Evidence-Based Care Required by Population:**
 - Fee-for Service: By Encounter

- **Individualized Health Care Services:**
 - Global Fee: By Episode of Care

- **Care of Potentially-Avoidable Complications:**
 - Warranty: For Episode of Care
Use Fair Empirically-Derived Standards
To Set Global Fees and Warranties

I would be a good boy if only you lowered your standards!
Standardized Hospital Costs and Adverse Outcomes
350 High Performing & 113 Suboptimally Performing Hospitals

% Adverse Outcome Rate

Total Hospital Cost (thousands $)

- Good Performance
- Problematic Performance
- Average Good
- Average Problematic

3.99% $11,192
6.91% $13,259
Aligning Risks, Responsibilities, and Rewards
In a Virtual Partnership

◆ Payer Bears Risk of Occurrence

◆ Managing Organization (e.g., Physician-in-Charge)
 • Receives Standard Negotiated Payment Minus Withhold
 • Overruns in Total Cost of Episode Covered by Withhold
 • Total Savings Shared with Payers

◆ Participating Caregiver
 • Receives Standard Negotiated Payment Minus Withhold
 • Achievement of Intermediate Milestones Determines:
 • Return of Withhold
External and Internal Monitoring

External Monitoring
Assesses Performance

- Provider Selection
- Network Formation
- Reimbursement
- Accountability
- Strategic Planning
- Marketing

Internal Monitoring
Links Processes to Outcomes

- Quality Control
- Quality Improvement
- Cost Management

Traditional Mortality and Morbidity Review

◆ Analyses of Single Cases with Adverse Outcomes
◆ Peer Review Aided by Medical Literature
◆ Objectives Vary
 • Identify and Correct Substandard Practice
 • Educate Participants
 • Improve Processes of Care
◆ Problems Abound
 • Rarely Affects Individual Practice
 • Divorced from Organizational Decision Making
 • Lacks Scientific Credibility
Fallacy of Generalizing from Single Cases

One Tree

Does Not a Forest Make
Designing Robust Observation Studies

◆ Strengths of Randomized Controlled Clinical Trials
 • Randomization Is Performed Prior to Intervention
 • Treatment and Control Groups Are Similar

◆ Overcoming Weaknesses of Observational Studies
 • Treatments Usually Are Not Randomly Administered
 • Select Controls with Same Likelihood of Treatment
 • Propensity Analyses Match Important Characteristics
Relating Clinical Processes to Outcomes

- Clinical Care Often Is Individualized
- Risk Profiles Affect Outcomes and Routine Care
 - Complications Often Are Related to Higher Initial Risk
 - Treatment May Vary with Initial Risk
 - Differences in Risk Profiles Confound Comparisons
- Matching by Predicted Outcome Reduces Bias
 - Match Cases with and without Complications
 - Compare Potentially Important Elements of Care
 - Differences Suggest Opportunities for Improvement
 - Chart Abstraction Often Required to Assess Processes

A Cycle of Continuous Quality Improvement

- Identify Opportunities to Improve
- Analyze Processes
- Plan for Improvement
- Select Controls
- Matched Controls
 - Reduce Confounding Bias
- Alter Processes
- Adverse Outcomes

Accountability in a Value-Driven Market

- Information about risks and results guides:
 - purchasing decisions and reimbursement
 - performance improvement initiatives

- Evaluation focuses on episodes of care, not on individual cost centers

- Margin and market share accurately reflect:
 - quality of care
 - clinical efficiency
Yes We Can!