

The Device Perspective of Quality in Manufacturing

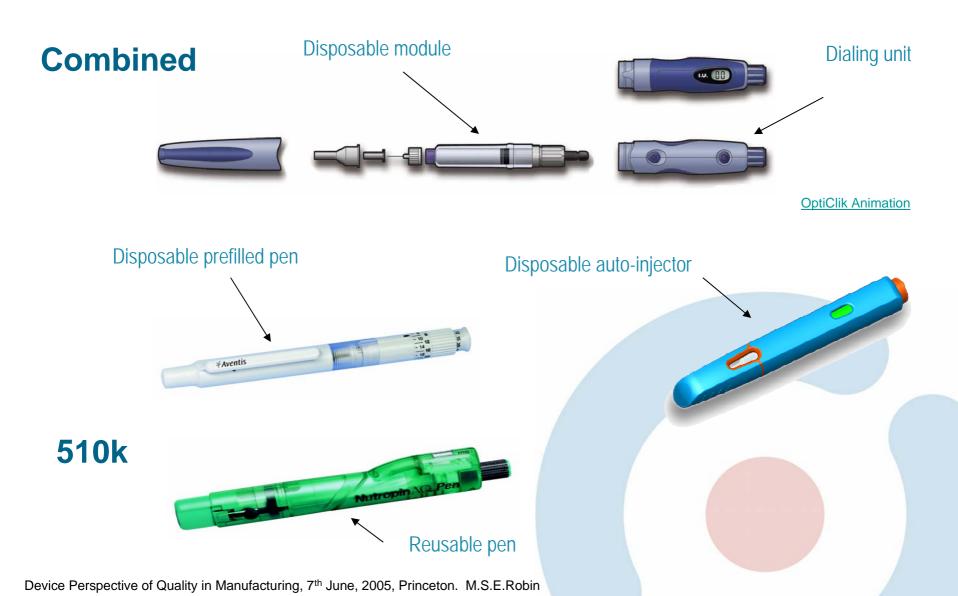
June 7, 2005

Agenda

- Scope of Presentation
- Background, Introduction
- Impact of Poor Quality
- Main Influences on Quality
- Tools and Methodology
- Summary
- Discussion / Questions

Context of Presentation

- Medical devices for drug delivery: stand alone or combinatorial products
- Quality from perspective of management / business



- Medical device design and manufacturer
- Focus on self-injection devices for therapeutic large molecules e.g. peptides, MCAs
- 19 years old
- \$200 million annual turnover; 850 employees
- Publically traded on SWX; market cap. \$1.1 billion

- > 3 million devices with lifetime > 2 years (20-40 parts)
- > 50 million disposable devices with lifetime 5 15 days (7 – 10 parts)
- >150 million sterile single use devices (5 parts)

Background: Ypsomed – Product Examples

Example: injectable biotech drug prefilled syringe or cartridge safety or self-injection device

- Annual cost of drug in treatment:
- Other associated treatment costs:
- Annual cost of devices:

\$20'000 \$10'000 \$250

\$1000's

Cost of handling one device complaint:

	POTENTIAL IMPACT ON			
company	direct costs	liability	reputation	sales
Pharma / Biotech Device	+++++ (1) +++ (2)	++ ++++		

- (1) complaint handling, lost drug, lost market, administration
- (2) guarantees, complaint handling, corrective action

- Convergence of expectations for medical devices and drug product
- Traceability requirements increased back through several layers of suppliers
 → higher performing QA systems required
- Post market surveillance and corrective action expectations increased
- Ocst and risk of complaints has increased
 → increased liability risk
- ✓ Vigilance of pharma and biotech industry has increased
 → realisation of vulnerability to quality issues in devices

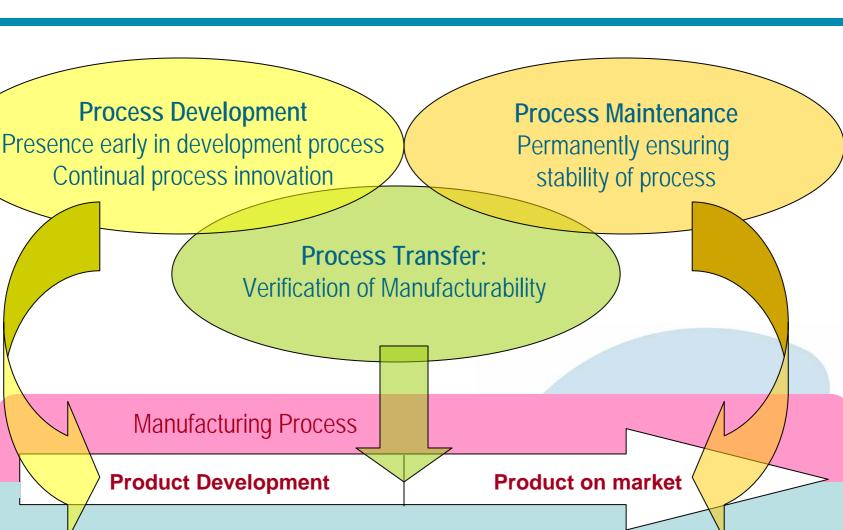
quality in	measured by	timeframe of impact
Design	 patient complaints on handling / ease of use internal wastage product failure on market 	 immediately patient has product during production late in lifecycle of product
Manufacturing	 internal wastage product failure on market 	 during production late in lifecycle of product

Perhaps the single most important factor in quality in manufacturing is the quality of the design

Determined by:

- Simplicity → remove unnecessary complexity
- Robustness \rightarrow account for variability on manufacturing
- Manufacturability
- Well specified product and process

Manufacturing aspects are an integral part of medical device design


Specification of Product and Components

In my experience, most quality problems in manufacturing arise from insufficiently or poorly specified products, components or raw materials rather than a poorly executed manufacturing process

→ focus on specifications

 (a verification / validation to incomplete specifications is useless)
 → understand supplier processes well enough to specify product
 → audit suppliers frequently

Design Development & Maintenance Process

YPS©MFD

Design Process (R&D)

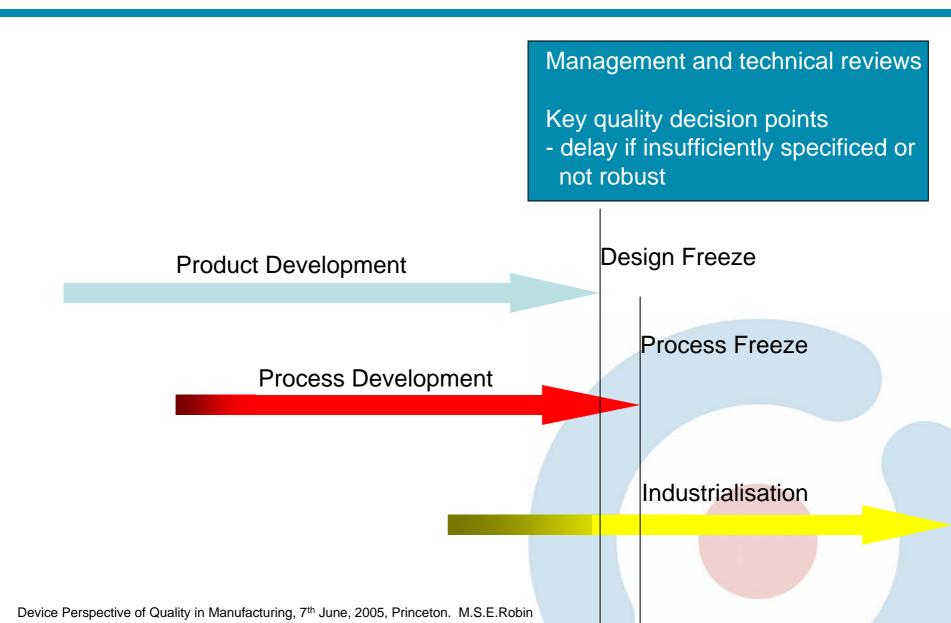
Design - Tools

- CAD / Kinematic animations
- Finite Element Analysis
- Mold Flow
- Tolerance Analysis
- Risk Analysis
- Design FMEA
- Process FMEA
- Mishandling analysis and studies

Specifications of components and product; validation and IPC parameters


Auto-Injector Easy cutout

Risk of damaging product during manufacturing → assembly processes, transport, automation Process verification and validation parameters



Design – Release

- API / chemical quality control:
 → characterisation of raw materials possible
 → focus on ensuring homogenicity of solution,
 - powder etc. \rightarrow assay analysis etc.
 - \rightarrow by definition then 100% of batch is released
- Medical device quality control
 - → complete characterisation of components hardly possible but key is sufficient specification
 - → focus on consistency of process parameters, key dimensions, elasticity parameters etc.
 - \rightarrow in addition need to identify individual deviations
 - thousands or millions of individual devices, tests
 often destructive
 - → by definition release of batches through statistical confidence levels

- Statistical in-process control (IPC) Example: injection moulding
 - \rightarrow tools <u>will</u> degredate
 - focus on identifying that moment
 - regular sampling
 - cavity separation to ensure isolation of problem
 - → numerous environmental parameters <u>will</u> influence dimensional and rheological characteristics of plastics
 - environmental monitoring
 - statistical IPC of dimensional parameters
 - intervention levels

Manufacturing – IPC

• Example of IPC

- Design testing into product
 - → every product must function, but virtually impossible to test each individual product unless designed into product

 \rightarrow these must be integral part of the design

Example: Disposable Pen assembly

- torque tests carried out as pen initial dose set
- dosing and resistance tests carried out as pen assembled (extra doses designed into pen !!)
- printing verified to 100% with cameras

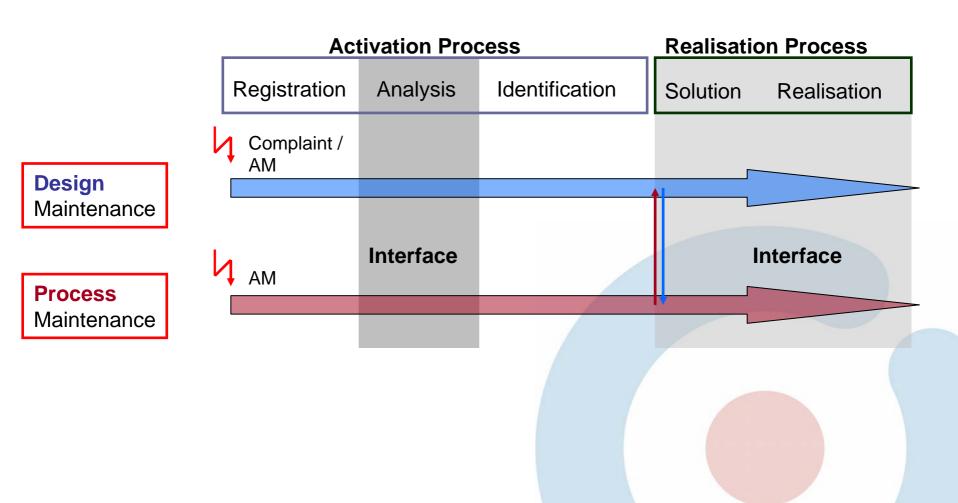
video sequence OptiSet

Example: Electronic Products

Possibility of self testing

- self-testing as device starts up
- monitoring of forbidden configuration changes
- diagnostic features to allow failure analysis if product malfunctions and returns from market
- secondary circuits which monitor functioning

simulation electronics



• 100% Testing may be appropriate

In electronics, challenge is low component yields, poor quality systems in supplier industry, sensitivity of manufacturing processes and complexity of devices

- \rightarrow chips have low yields and show frequent deviations
 - 100% testing of chips
- → components supplied on rolls from industry without medical device industry standards, incorrect labelling possible
 - 100% testing of individual rolls
 - 100% testing of each complete circuit board
- → functionality of final product could be damaged in manufacturing process (ESD)
 - 100% test of final product

- Market feedback will usually indicate manufacturing or design risks: it is important to react before a major quality issue occurs
 - trending is insufficient, action on findings required
 - \rightarrow product improvement teams
 - \rightarrow complaint reduction targets
 - \rightarrow waste reduction targets
 - waste as an indication of defect potential
 - react to single complaints or deviations, don't wait for an accumulation as it is probably too late then
 - → maintain design team into post-market surveillance period

YPSOMED

SOLUTIONS

• Summary

- Prevention

- \rightarrow well specified products and raw materials
- → good control over suppliers (understand their processes)
- \rightarrow good, robust design
- \rightarrow well thought out, robust process
- \rightarrow zero tolerance of weaknesses, delay launch if required

- Monitoring

- \rightarrow In-process control strategies
- → Consider and design in 100% testing
- Correction
 - → Market vigilence and corrective action