
From Population Health to Precision Health

IBM Watson Health

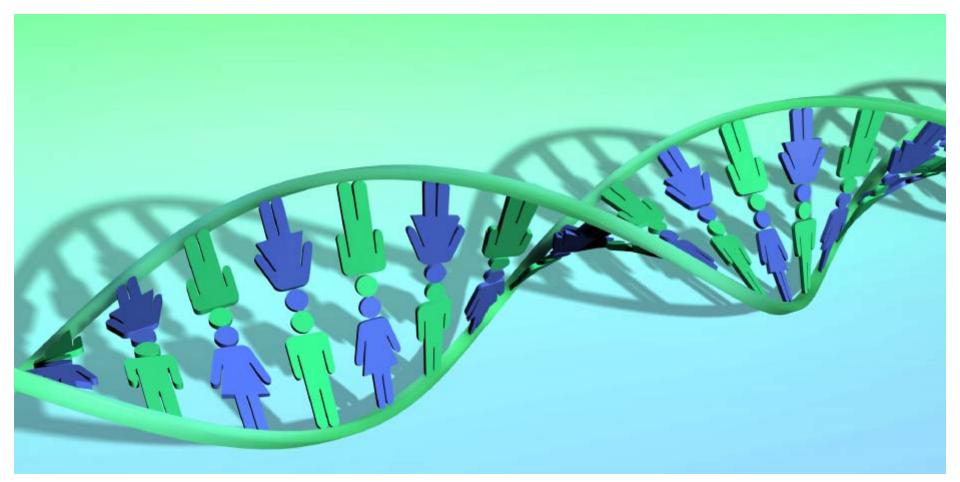
William J, Kassler, MD, MPH Deputy Chief Health Officer March 28, 2017

The current health system faces serious challenges.

A New Era of Personalized Healthcare

Completion of Human Genome Project in 2003 led to expansion of research on the contributions of genomics in disease diagnosis, treatment, and prevention

Green, ED et al (2011). Charting a course for genomic medicine from base pairs to bedside. Nature 470: 204-213


Early Discovery

What biological or environmental factors are causing disease? Can we design diagnostics and drugs to improve patient outcomes?

Clinical Genomics

What does my patient's genomic information tell me about the treatment I should select?

The Challenges of Big Data

Keeping up

There are 100,000+ clinical trials running in parallel.

A patient will generate >12 TB of personal health data in a lifetime (300 million books).

Medline: 424 million published articles in 5600 journals

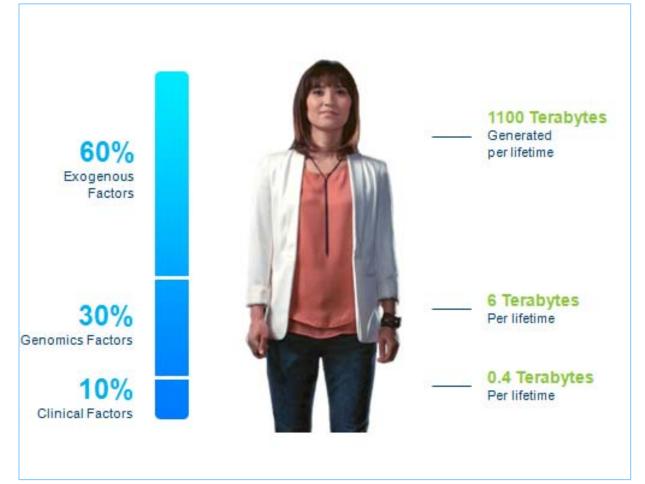
1.8 million new articles published annually

80% Unstructured

A typical high-need patient has a 100+ page electronic health record.

Text where meaning is often derived from context

Images: X-rays, sonograms, electrocardiograms, magnetic resonance images, and mass spectrometry results


Noisy

Problems of scale: finding the signal in the noise when its buried in millions of pages across multiple silos

Humans must collect, organize data and evaluate evidence

Introduces cognitive bias

Only 10% of health outcomes are related to healthcare

It's critically important that we consider all influences and opportunities for positively affecting health choices.

Reconciling the clinical perspective with a broader community perspective

Community: Geographically defined Health Systems: Hospitals, ACOs, Health Plans Clinical practices: Patient panels, Racial/Ethnic groups, subgroups with specific chronic diseases

Tabulating Systems Era

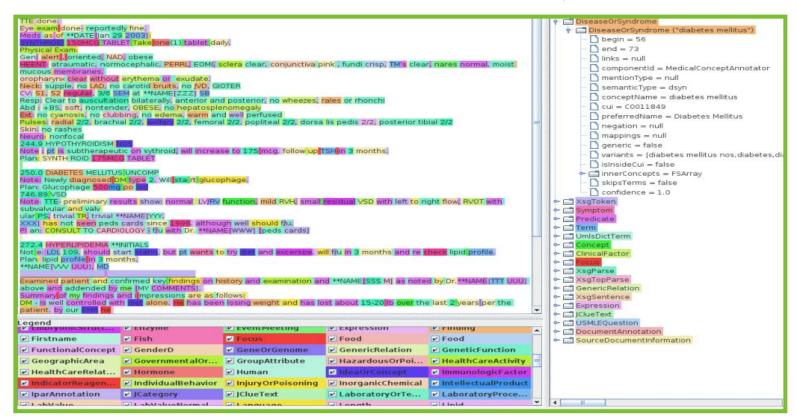
1900 – 1940s

Programmable Systems Era

950s – Present

Cognitive Computing Era

2011 –



Natural Language Processing

Reads unstructured documents, notes, patient history, lab reports ...

Combine Knowledge-driven and Data-driven Analytics to generate insights and identify potential outcomes

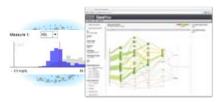
From population averages ...

- Scientific papers
- Books
- Guidelines

Published Knowledge

Knowledge-Driven Approach

etznines, anoreas, dy mouth, increased thirit, and frequent uinstain. She haid also had love and reported that fool would by stack with ent do was assiloumed. She reported for pain in five students, but, or flash and no costy, stronness of treath, mortion, and the students, but, or flash and no costy, stronness of treath, and controlled the stack of the


reported continued weakness and disziness despite drinking a lot of fluids. See less better when high godon. Her supplie blood pressure was \$10800 mm High godon. Her supplies blood pressure was \$10800 mm High godon. Her supplies blood pressure was \$10800 mm High godon. Her supplies blood pressure was \$10 mm High godon High godon

Observational Data

To insights for individual patient!

- Longitudinal records
- Claims, Rx, Labs
- Patient reported data

Data-Driven Approach

Applications of Cognitive Analytic Techniques

Real World Evidence / Patient Similarity Analytics

Precision Cohorts: dynamic identification of "patients like mine"

Segmentation Analysis

Identifying & understanding the population: targeted care delivery and policies

Personalized Predictive Models

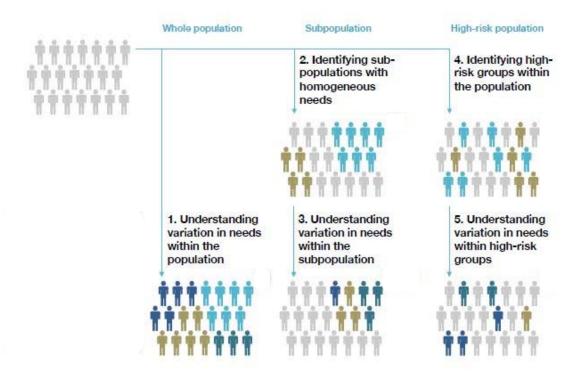
"Segment-of-one" predictive model

Data Visualization

Care pathways and associated outcomes

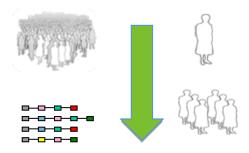
Trade-off Analytics

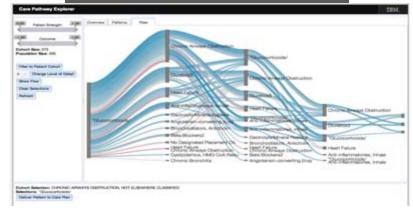
Personalized shared decision making


Patient Similarity Analytics

Potential to create Precision Cohorts of "patients like mine"

Machine Learning automatically learn the metric from observational data algorithms and labels provided by experts or derived from data


Segmentation Analysis


Care Path Flow

Potential to Visualize Care Pathways and Associated Outcomes

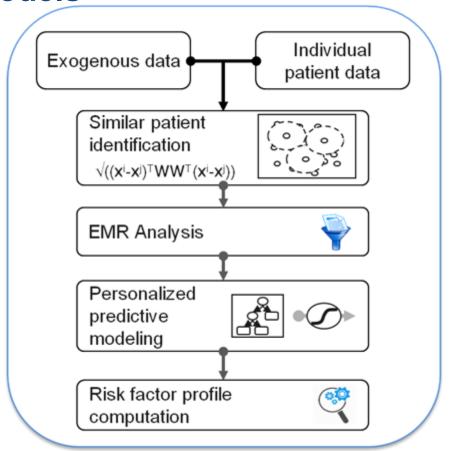
- Patient Similarity Analytics to find clinically similar patients
- Extract historical event trails and relevant patient characteristics
- **Visual Summary** of clinical pathways of similar patients, connected to relevant events
- Outcomes related to pathways help inform clinical decisions with most-desirable vs mostproblematic pathway

Care Path Visualization

Tradeoff Analytics:

Optimize provider selection on service quality, proximity, license held, cost of service, and preferences

Personalized Predictive Models


Potential to:

Predict

Personalize

Prevent

Promote

Humans + Cognitive = "AI" or Augmented Intelligence

People excel at:

Common sense

Dilemmas

Morals

Compassion

Imagination

Dreaming

Abstraction

Generalization

Cognitive systems excel at:

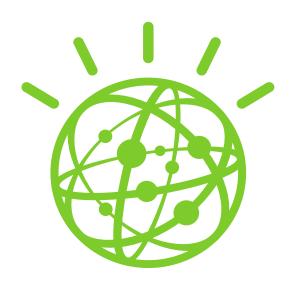
Natural Language

Pattern Identification

(

Locating Knowledge

Machine Learning


Eliminate Bias

Endless Capacity

Allowanters of the second seco Shotward and of analy duganted for the state of the state ti Da Bigin a Bruch Army Aunglan whore unidance of acceptance to the same the

Let's Work Together

w.kassler@ibm.com

- @KasslerMD
- @IBMWatsonHealth

www.ibm.com/Watson/health