

# AEye<sup>™</sup> Big Data Challenges and Opportunities

Anthony Vipin Das, FRCS

L V Prasad Eye Institute



## **Financial Disclosures**

None







# Building a DIGITAL Institution







## Vision Centre Complex

#### 202 Centres - 8 yrs













5 Million Consults and counting...



















# Can Research be in REAL TIME? Bridging the GAP in Human Understanding



# Asking the Question

**Disease Progression** 

**Image Analysis** 

**Surgical Outcomes Prediction** 

**OPD** Forecasting

**Population Health** 





# H-K-M-B-T



# **Tools for Analysis**





# **Continuous Data Pipelines**







#### **AEye Pipeline**

## eyeSmart Rural App (N=501,771)



#### **AEye Pipeline**

So that all may see







#### **AEye Pipeline**



#### **ORIGINAL** INVESTIGATION

#### The Incidence of Lacrimal Drainage Disorders Across a Tertiary Eye Care Network: Customization of an Indigenously Developed Electronic Medical Record System—eyeSmart

Anthony Vipin Das, F.R.C.S., M.D.\*, Suryasnata Rath, F.R.C.S., M.D.†, Milind N. Naik, M.D.†, and Mohammad Javed Ali, F.R.C.S., Ph.D.†

\*Department of eyeSmart EMR & AEye, and †Govindram Seksaria Institute of Dacryology, L.V.Prasad Eye Institute, Hyderabad, India

## Lacrimal Disorders

 TABLE 1.
 Incidence of lacrimal drainage disorders by diagnosis

| Diagnosis                                         | No. of patients (%) |
|---------------------------------------------------|---------------------|
| 1. Primary acquired nasolacrimal duct obstruction | 10,364 (51.56)      |
| 2. Congenital nasolacrimal duct obstruction       | 5394 (26.83)        |
| 3. Acute dacryocystitis                           | 1074 (5.34)         |
| 4. Punctal stenosis                               | 603 (3.00)          |
| 5. Failed external DCR elsewhere                  | 460 (2.29)          |
| 6. Secondary acquired lacrimal duct obstruction   | 298 (1.48)          |
| 7. Functional epiphora                            | 271 (1.35)          |
| 8. Failed endoscopic DCR elsewhere                | 235 (1.17)          |
| 9. Lacrimal abscess                               | 194 (0.97)          |
| 10. Bicanalicular obstruction                     | 182 (0.91)          |
| 11. Canaliculitis                                 | 163 (0.81)          |
| 12. Canalicular laceration                        | 109 (0.54)          |
| 13. Punctal agenesis                              | 101 (0.50)          |
| 14. Isolated lower canalicular obstruction        | 75 (0.37)           |
| 15. Acquired lacrimal fistula                     | 72 (0.36)           |
| 16. Congenital lacrimal fistula                   | 65 (0.32)           |
| 17. Common canalicular obstruction                | 60 (0.30)           |
| 18. Canalicular stenosis                          | 54 (0.27)           |
| 19. Isolated upper canalicular obstruction        | 50 (0.25)           |
| 20. Incomplete punctal canalization               | 43 (0.21)           |
| 21. Peripunctal lesions                           | 37 (0.18)           |
| 22. Atonic lacrimal sac                           | 36 (0.18)           |
| 23. Failed dacryocystectomy elsewhere             | 22 (0.11)           |
| 24. Punctal ectropion                             | 20 (0.10)           |
| 25. Failed laser DCR elsewhere                    | 19 (0.09)           |
| 26. Rare punctal disorders                        | 19 (0.09)           |
| 27. Canalicular wall dysgenesis                   | 18 (0.09)           |
| 28. Lacrimal sac tumors                           | 17 (0.08)           |
| 29. Lacrimal sac diverticula                      | 17 (0.08)           |
| 30. Lacrimal sac dacryoliths                      | 16 (0.08)           |
| 31. Centurion syndrome                            | 10 (0.05)           |
| 32. Hemolacria                                    | 4 (0.02)            |
| DCR, Dacryocystorhinostomy.                       |                     |



#### Key Insights

#### 32 Diseases

No Laterality

2/3<sup>rd</sup> Females

20,102 patients



# 1.45 Million

Rao Donthineni, Pragnya & Kammari, Priyanka & Shanbhag, Swapna & Singh, Vivek & Vipin Das, Anthony & Basu, Sayan. (2019). Incidence, demographics, types and risk factors of dry eye disease in India: Electronic medical records driven big data analytics report I. The Ocular Surface. 10.1016/j.jtos.2019.02.007.

## Dry Eye Disease (N=21,290)





#### Professional Work (OR 1.5), Affluence (OR 1.6-3.2)







#### **Bimodal** Distribution (Gender)









## The AEye Pipeline

Pavan Verkicharla & Anthony Vipin Das, Community Eye Health. March 2019

### Refractive Error Prediction (N=333,000)





### Patient Forecasting (N= 3,384,157)



0.5

0.4



#### Increasing patient inflow

over 8 years





Frequency



#### SARIMA Modeling Results



Green = Actual Value ; Red = Predicted Value

Prediction Error <20% for 52 weeks - 63% to 96%





# GIGO

## **Current Scenario**



(1) Researchers lack consensus about the operational definition of Big Data in healthcare;

(2) Big Data in healthcare comes from the internal sources within the hospitals or clinics as well external sources including government, laboratories, pharma companies, data aggregators, medical journals etc.;

(3) Natural language processing (NLP) is most widely used Big Data analytical

technique for healthcare and most of the processing tools used for analytics are based on Hadoop;

(4) Big Data analytics finds its application for clinical decision support; optimization of clinical operations and reduction of cost of care

(5) Major challenge in adoption of Big Data analytics is non-availability of evidence of its practical benefits in healthcare





# 1 Billion











Data is not information,

Information is not knowledge,

Knowledge is not understanding,

Understanding is not wisdom.

Wisdom is not Impact!



## So that all may see