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Analytical Challenges for Health Insurance

• Competitive pressures in marketplace make it imperative 
that insurers gain deep understanding of business

• Essential to leverage the insights that can be extracted 
from ever growing databases (including web interaction)

• Rich extensive data in large volume allow detailed and 
effective analysis of every aspect of business

• Areas amenable to high quality analysis include
– Risk: Probability of Claim, Expected Losses on claims
– Fraud: Identification of probable individual fraud, detection of 

organized professional fraud
– Analytical CRM: precision targeted marketing, scoring policy 

holders for lapse probability, identifying upsell opportunities
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Analytical Opportunities

• “Have Data Will Analyze”
– A predictive enterprise applies analytical modeling techniques to 

all areas of business 
– All you need is adequate historical data 

• Analytics can be applied in nontraditional ways
– What makes 2007 different from 2006?
– Which case managers are most effective for specific types of 

claim?
– When is the best time to make a cross-sell offer?

• Opportunities are limited only by creativity of analysts
– Ad-hoc queries can be reformulated as mini-data mining projects 
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Why Data Mining Has Changed the Game

• Conventional statistical models (GLMs) take too long to 
develop and require too much expertise 
– Not enough statisticians to develop all needed stats models
– Data mining models can be built in far less time

• Data mining has raised the bar for the accuracy that can 
be achieved
– Modern methods can be substantially better than GLMs

• Data mining methods can also work effectively with 
larger and more complex data sets
– Can easily work with hundreds, even thousands of predictors
– Can rapidly detect complex interactions among many factors

September, 2008 Copyright © Salford Systems 2008



Importance of Interactions

• “In matters of health everything interacts with everything”
– Quote from a veteran consultant to the health insurance industry

• Conventional statistical models are typically additive
– Each predictive factor acts in isolation
– E.g. What is protective effect of large doses of Vitamin E for 

coronary heart disease?
• Truth appears to be an interaction: for people under 55 years 

old the benefit is zero; for over 55 it is substantial

• Certain data mining techniques such as CART and 
TreeNet are specifically designed to find interactions 
automatically
– Conventional stats poorly equipped to detect interactions
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Further Data Mining Capabilities

• Data mining methods solve data preparation challenges:
– Automatic handling of missing values. Generally missing values 

require considerable manual effort by GLM modelers.
– Detection of nonlinearity: statisticians devote much energy to 

addressing potential nonlinearity and threshold effects
– Outliers and data errors can have large deleterious effects on 

GLMs but  have much less impact on data mining models
– Statisticians spend much of their time looking for the right set of 

predictors to use, selecting from a large pool of candidates. 
– Data mining methods can effectively select predictors 

automatically

• Data mining makes modelers more productive
– Develop more high quality models in less time
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Examples of Data Mining in Action 
for Health Insurance

• Real world examples that can be publicly reported rare
– Issues: privacy and proprietary nature of results
– Can often only report fragments of results released to public
– Several studies presented at Salford Systems conferences

• Worker’s Compensation: Identifying probable serious 
cases at time a case is opened
– WORKCOVER: New South Wales, Australia
– Analysis conducted by PriceWaterhouseCoopers, Australia

• Lifetime value of a customer
– Depends on probability of hospital claims and length of stay

• Health related example from automobile injury insurance
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Cases Studies 
By Users of CART®, MARS®, TreeNet®

• Papers available on request from Salford Systems
– Charles Pollack B.Ec F.I.A.A. Suncorp Metway, Australia
– Inna Kolyshkina, Price Waterhouse Coopers, Australia

• Other case studies not included here also available
• CART, MARS, TreeNet, RandomForests® are flagship 

technologies of Salford Systems
– Core methods developed by leading researchers at Stanford 

University and UC Berkeley
– In use at major banks, insurers, credit card issuers and networks 

(VISA) and internet portals (Yahoo!)
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Case Study: Worker’s Compensation 
Predicting Serious Claims at Case Outset 

• Minority of claims serious (about 14%):
– Serious claims are responsible for  90% of costs incurred
– Case may become chronic (serious) if not managed well early
– Fast return to work best for insurer and insured
– Early prediction could accelerate effective medical treatment 

• Apply CART to a set of claims to identify variables 
predicting a serious claim

• 83 variables as potential predictors of “serious claim”
• Categorical predictors with many levels

– “Occupation code” 285 levels
– “Injury location code” 85 levels
– Such variables are handled with ease in CART
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• Examples of Data available:
– About  claim:

• Dates of registration and closing
• Was the claim reopened?
• Was the claim litigated?
• Liability estimates
• Payments made
• Was claim reporting delayed?

– About  claimant:
• Gender, age, family/dependents
• Employment type, occupation, work duties
• Wages

– About  injury or disease:
• Time and place
• Location on body
• Cause or mechanism

Case Study: Worker’s Compensation 
Predicting Serious Claims at Case Outset 
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• “Serious Claim” defined as:
– Claimant received payment  at least three months  (time off  work)

AND/OR
– Claim was litigated

• Modeling based on a random sample of cases 
– injury occurred 18-24 months prior to the latest claim

Case Study: Worker’s Compensation 
Predicting Serious Claims at Case Outset 
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• Results:
– 19 predictive predictors selected from 83 candidates
– Some predictors expected ( nature and location of injury)
– Some unexpected (like claimant language skills)

• Classified 32% of all claims as serious (test data)

Case Study: Worker’s Compensation 
Predicting Serious Claims at Case Outset 
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Actual/Predicted Serious Not Serious Total

Serious 6,823 2,275 8,558
Not Serious 12,923 39,943 52,866



• Misclassification tables

– 2/3 data for learning, 1/3 for testing

Case Study: Worker’s Compensation 
Predicting Serious Claims at Case Outset 
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• Model Assessment: Gains chart:
– Data ordered from nodes with 

highest proportion of “serious” 
claims to lowest

– Baseline is if model gave no 
useful information

– Curve is cumulative percentage 
of “serious” claims versus the 
cumulative percentage of the 
total population

– Difference between baseline 
and curve is the “gain”

• The higher above baseline 
the better the model (larger 
gain)

Percentage of population 
examined

Percentage of “serious” claims 
identified

Case Study: Worker’s Compensation 
Predicting Serious Claims at Case Outset 
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Case Study: Modeling Total Projected 
Customer Value for  a Health Insurer

• Lifetime customer value
– Discounted present value of income less associated expenses

• Develop model for total projected customer value
– Multiple sub-models:

• Hospital claim frequency and cost for next year
• Ancillary claim frequency and cost for next year
• Transitions from one product to another
• Births, deaths, marriages, divorces
• Lapses
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• Data used for hospital claim frequency and cost sub- 
model:
– Covered a 36-month period
– Predicted outcomes for next 12 months using data from previous 

24 months 
• About 300 variables as potential predictors:

– Demographic (age, gender, family status)
– Geographic and socio-economic (residence location, indices on 

education, advantage/disadvantage)
– Membership and product (membership duration, product held)
– Claim history and medical diagnosis
– Miscellaneous data (distribution channel, payment method, etc.)

Case Study: Modeling Total Projected 
Customer Value for  a Health Insurer
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• Hospital claim frequency and cost sub-model divided into 
two sub-models:
– Predict probability of at least one claim over past 12 months
– Predict cost given at least one claim

• Data segregated with separate models
– Claims lasting one day
– Claims lasting more than one day with a surgical procedure
– Other claims

Case Study: Modeling Total Projected 
Customer Value for  a Health Insurer
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• Exploratory analysis
– Preliminary tree construction to uncover broad groups of data
– CART gave four groups according to age and previous experience

• Build separate claims cost models for each group
– Using CART as a model segmentation tool
– Used MARS to build cost regressions

• Results
– Similar predictors found among groups (age, hospital coverage 

type)
– Major differences in models across groups 

• Context dependence

Case Study: Modeling Total Projected 
Customer Value for  a Health Insurer

Copyright © Salford Systems 2008September, 2008



• Joint CART/MARS 2 stage results
– The top 15% of members predicted to have highest 

cost accounted for 56% of total actual cost
– The top 30% of members predicted to have highest 

cost accounted for 80% of total actual cost

Case Study: Modeling Total Projected 
Customer Value for  a Health Insurer
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• Joint CART/MARS Results:  Gains chart

Case Study: Modeling Total Projected 
Customer Value for  a Health Insurer
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• Two stage model Results:  
Average actual and predicted values for overall annual hospital cost

• Large differential 
between highest and 
lowest indicates a 
good model

• Model follows actual 
with a good fit

Case Study: Modeling Total Projected 
Customer Value for  a Health Insurer
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Case Study: Optimizing Premium 
Increases

• Australia’s 2nd biggest insurer (SunCorp Metway)
– Modified rates after an acquisition to enforce uniformity
– Some premiums increased, others decreased (subject to caps)

• Opportunity to study the impact of price changes
• Goal: Identify optimal capping rules for price increases

Difference between New and Old Premiums
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•X-axis: premium change
•Bars indicate frequency 
among policies

•Blue line is retention rate

•Large premium changes 
(up or down) lead to lapse



• Model 1: Yes/No model for “did customer renew?”
• Data used
– 12 months of renewal offers. Split 2:1 for training and testing
• Variables included
– Age of insured
– Other product holdings
– Length of time with organisation
– Distribution channel
– Geographic Location
– Age of vehicle/house
– Method of Payment (Monthly/Annual)
– Level of ‘No Claims Bonus’
– Value of vehicle/house
– Level of Deductible
• Price change not included as it was randomly distributed

Case Study: Optimizing Premium 
Increases
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• Retention tree
• 7 segments
• Excludes price change

Case Study: Optimizing Premium 
Increases
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• Tree translated NCD Step Back?

Group 1 Endorsement?

Group 2 Risk added mid term?
(Renewal term different

from last term)Group 3
Premium Payment

Frequency

Group 14

NCD < 40%?

Group 15

Multi-Product 
Holdings?

Group 4 NCD Level < 40%?

Monthly

Group 5

Annual

Number of 
previous 

renewals > 4?
Group 6

State

Vehicle Age < 8?

Group 11

Other

Driver age < 49?

Group 12 Group 13

CTP Discount?

NSW, QLD

Group 7
Number of 
Previous 
Renewals < 1?

Group 8 Driver age < 42?

Group 10Group 9

Business Rules

Case Study: Optimizing Premium 
Increases
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Price Elasticity within Retention Segments

September, 2008 Copyright © Salford Systems 2008

Probability of retention as a function of % price change, within CART segment



Price Elasticity within Retention Segments
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Probability of retention as a function of $ price change, within CART segment



• Results
– Variable importance differed somewhat from business 

expectations
– Notable absence of age of insured from early splits
– Length of time with company of lower order 

importance than expected
– Some variables were important in unexpected ways 

(like customers with multi-product holdings)

Case Study: Optimizing Premium 
Increases
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• Does the model work?
– Even with extremely high cost of new business acquisition, 

the optimal result is achieved with NO capping
– Model validated for three months following 12 months data 

period
• Predictions matched well with actual results

– Tree was easily explained to management
– Some business expectations (myths?) were dispelled
– Modelling assumptions were validated

Case Study: Optimizing Premium 
Increases
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CART Model Training
Validation

Period

CART Model Testing

12 months of renewal offers



Hybrid Case Study: MARS guided GLM

• Data used
– Industry-wide auto liability data for Queensland, Australia 
– Individual claim data aggregated into the number of claims 

reported
• Potential predictors include

– Accident month 
– Number of casualties
– Number of vehicles in the calendar year
– Number of vehicles exposed in the month
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• Initial GLM without MARS 
– Poisson model with log link
– Number vehicles exposed in a month as offset 
– Manual transformation and interactions
– Assessed with ratio of deviance to the degrees of freedom, predictor 

significance, link test and residual analysis
– 5-7 days to generate

• Second GLM based on MARS variables and transforms 
– MARS model

• ratio of incurred number of claims to number of vehicles exposed in the 
month as the dependent variable

– Input resulting MARS basis functions to new GLM (same conditions as 
initial GLM) 

• Backward elimination to remove a small number of insignificant variables
• Assessed with same methods as initial GLM

– One hour to generate MARS-enhanced GLM
• Compare models with assessment results and gains charts

Hybrid Case Study: MARS guided GLM
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• MARS-enhanced modelling considerable faster and 
more efficient

• Performance and fit the same
Claim frequency. Hand-fitted GLM 

-

10,000

20,000

30,000

0.0
5 0.2 0.3
5 0.5 0.6
5 0.8 0.9
5

% of data 

nu
m

be
r 

of
 c

la
im

s

C laim frequency. MARS-enhanced GLM 

-

10,000

20,000

30,000

0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75
0.85
0.95

% of data 

nu
m

be
r 

of
 c

la
im

s

Hybrid Case Study: MARS guided GLM
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• Gains chart
– Equal performance
– Gains tables indicate 

marginally better 
performance from 
MARS-enhanced GLM

• High degree of 
similarity in variable 
importance

Gains Chart 
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• MARS-enhanced GLM picked up variable interactions not 
detected by hand-fit GLM

Hybrid Case Study: MARS guided GLM
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Hybrid Case Study: Retention Modeling

• Data
– 198,386 records from the UK
– Each record is one trial / outcome
– Split 50/50 for training and testing

• 135 potential predictors
– For GLM each variable is binned
– 3,752 total levels across all variables

• Combine GLM and CART for one complete model
• Current practice by EMB for casualty insurance GLMs
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• GLM (forward regression)
– 57 significant predictors
– Took a weekend to run

• CART
– 24 significant predictors
– Top 15 shared with GLM

• Took one hour to run

• Final model has 26 predictors
– 6 interactions found by CART
– ROC values of 0.862 (training) and 0.85 (test)

Hybrid Case Study: Retention Modeling
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• Combining CART, MARS, and GLM
– CART: Select predictors, understand data
– MARS: refine regressors
– GLM: takes MARS basis functions as predictors

• Can also go from GLM to CART
– Use CART to analyze GLM residuals

Hybrid Modeling CART-MARS-GLM 

Refined data set +
Important variables

Basis functions
Familiar results format

Compare with 
other GLM 
models

Residuals

CART MARS GLM

Optimal Model

Familiar statistical analyses
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Salford Systems: R&D Staff and 
Academic Links

• Dan Steinberg, PhD Econometrics, Harvard ( Data Mining)
• Nicholas Scott Cardell, PhD Econometrics, Harvard (Data Mining, 

Discrete Choice)
• Jerome H. Friedman, Stanford University (algorithm coder CART, 

MARS,Treenet, HotSpotDetector)
• Leo Breiman, UC Berkeley (algorithm developer, ensembles of 

trees, randomization techniques to improve trees)
• Richard Olshen, Stanford University (Survival CART, Tree- 

BasedClustering)
• Charles Stone, UC Berkeley (CART large sample theory)
• Richard Carson, UC San Diego (Visualization Methods, Super 

Computer methods)
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Salford Systems: Selected Awards

• 2007 Winner of the DMA Analytics Challenge (targeted marketing)
• 2007 Grand Champion for the PAKDD Data Mining Competition
• 2006 First runner-up for the PAKDD Data Mining Compeititon
• 2004 First place for the KDD Cup (accuracy in particle physics)
• 2002 Winner of the Duke University/NCR Teradata CRM center data 

mining and modeling competition
• 2002 Jerome Friedman (developer of CART, MARS, TreeNet) 

awarded the ACM SIGKDD Innovation Award
• 2000 Winner of the KDDCup 2000 International Data Mining 

competition
• 1999 Deming Committee winner of the Nikkei Prize for excellence in 

contributions to quality control in Japan
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Salford Systems: Contact information

• Contact us to obtain the studies on which these 
slides were based

• Salford Systems world headquarters
– info@ salford-systems.com
– 4740 Murphy Canyon Rd. Suite 200
– San Diego CA, 92123
– (619) 543-8880 (voice) 
– (619) 543-8888 (FAX)
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