Data Mining Opportunities in Health Insurance

Methods Innovations and Case Studies
Dan Steinberg, Ph.D.

September, 2008

Copyright © Salford Systems 2008
Analytical Challenges for Health Insurance

• Competitive pressures in marketplace make it imperative that insurers gain deep understanding of business
• Essential to leverage the insights that can be extracted from ever growing databases (including web interaction)
• Rich extensive data in large volume allow detailed and effective analysis of every aspect of business
• Areas amenable to high quality analysis include
 – Risk: Probability of Claim, Expected Losses on claims
 – Fraud: Identification of probable individual fraud, detection of organized professional fraud
 – Analytical CRM: precision targeted marketing, scoring policy holders for lapse probability, identifying upsell opportunities
Analytical Opportunities

• “Have Data Will Analyze”
 – A predictive enterprise applies analytical modeling techniques to all areas of business
 – All you need is adequate historical data

• Analytics can be applied in nontraditional ways
 – What makes 2007 different from 2006?
 – Which case managers are most effective for specific types of claim?
 – When is the best time to make a cross-sell offer?

• Opportunities are limited only by creativity of analysts
 – Ad-hoc queries can be reformulated as mini-data mining projects
Why Data Mining Has Changed the Game

• Conventional statistical models (GLMs) take too long to develop and require too much expertise
 – Not enough statisticians to develop all needed stats models
 – Data mining models can be built in far less time

• Data mining has raised the bar for the accuracy that can be achieved
 – Modern methods can be substantially better than GLMs

• Data mining methods can also work effectively with larger and more complex data sets
 – Can easily work with hundreds, even thousands of predictors
 – Can rapidly detect complex interactions among many factors
Importance of Interactions

• “In matters of health everything interacts with everything”
 – Quote from a veteran consultant to the health insurance industry

• Conventional statistical models are typically *additive*
 – Each predictive factor acts in isolation
 – E.g. What is protective effect of large doses of Vitamin E for coronary heart disease?
 • Truth appears to be an interaction: for people under 55 years old the benefit is zero; for over 55 it is substantial

• Certain data mining techniques such as CART and TreeNet are specifically designed to find interactions automatically
 – Conventional stats poorly equipped to detect interactions
Further Data Mining Capabilities

• Data mining methods solve data preparation challenges:
 – Automatic handling of missing values. Generally missing values require considerable manual effort by GLM modelers.
 – Detection of nonlinearity: statisticians devote much energy to addressing potential nonlinearity and threshold effects
 – Outliers and data errors can have large deleterious effects on GLMs but have much less impact on data mining models
 – Statisticians spend much of their time looking for the right set of predictors to use, selecting from a large pool of candidates.
 – Data mining methods can effectively select predictors automatically

• Data mining makes modelers more productive
 – Develop more high quality models in less time
Examples of Data Mining in Action for Health Insurance

- Real world examples that can be publicly reported rare
 - Issues: privacy and proprietary nature of results
 - Can often only report fragments of results released to public
 - Several studies presented at Salford Systems conferences
- Worker’s Compensation: Identifying probable serious cases at time a case is opened
 - WORKCOVER: New South Wales, Australia
 - Analysis conducted by PriceWaterhouseCoopers, Australia
- Lifetime value of a customer
 - Depends on probability of hospital claims and length of stay
- Health related example from automobile injury insurance
Cases Studies
By Users of CART®, MARS®, TreeNet®

- Papers available on request from Salford Systems
 - Charles Pollack B.Ec F.I.A.A. Suncorp Metway, Australia
 - Inna Kolyshkina, Price Waterhouse Coopers, Australia

- Other case studies not included here also available

- CART, MARS, TreeNet, RandomForests® are flagship technologies of Salford Systems
 - Core methods developed by leading researchers at Stanford University and UC Berkeley
 - In use at major banks, insurers, credit card issuers and networks (VISA) and internet portals (Yahoo!)

September, 2008 Copyright © Salford Systems 2008
Case Study: Worker’s Compensation
Predicting Serious Claims at Case Outset

• Minority of claims serious (about 14%):
 – Serious claims are responsible for 90% of costs incurred
 – Case may become chronic (serious) if not managed well early
 – Fast return to work best for insurer and insured
 – Early prediction could accelerate effective medical treatment

• Apply CART to a set of claims to identify variables predicting a serious claim

• 83 variables as potential predictors of “serious claim”

• Categorical predictors with many levels
 – “Occupation code” 285 levels
 – “Injury location code” 85 levels
 – Such variables are handled with ease in CART

September, 2008
Copyright © Salford Systems 2008
• Examples of Data available:
 – About claim:
 • Dates of registration and closing
 • Was the claim reopened?
 • Was the claim litigated?
 • Liability estimates
 • Payments made
 • Was claim reporting delayed?
 – About claimant:
 • Gender, age, family/dependents
 • Employment type, occupation, work duties
 • Wages
 – About injury or disease:
 • Time and place
 • Location on body
 • Cause or mechanism
“Serious Claim” defined as:
- Claimant received payment at least three months (time off work) AND/OR
- Claim was litigated

Modeling based on a random sample of cases
- Injury occurred 18-24 months prior to the latest claim
Results:
- 19 predictive predictors selected from 83 candidates
- Some predictors expected (nature and location of injury)
- Some unexpected (like claimant language skills)

Classified 32% of all claims as serious (test data)

<table>
<thead>
<tr>
<th>Actual/Predicted</th>
<th>Serious</th>
<th>Not Serious</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious</td>
<td>6,823</td>
<td>2,275</td>
<td>8,558</td>
</tr>
<tr>
<td>Not Serious</td>
<td>12,923</td>
<td>39,943</td>
<td>52,866</td>
</tr>
</tbody>
</table>
Case Study: Worker’s Compensation
Predicting Serious Claims at Case Outset

• Misclassification tables

Misclassification for learning data

<table>
<thead>
<tr>
<th>Class</th>
<th>N Cases</th>
<th>N Misclassified</th>
<th>Percent Error</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious</td>
<td>16,922</td>
<td>3,891</td>
<td>22.99</td>
<td>0.23</td>
</tr>
<tr>
<td>Non-Serious</td>
<td>105,358</td>
<td>25,744</td>
<td>24.43</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Misclassification for test data

<table>
<thead>
<tr>
<th>Class</th>
<th>N Cases</th>
<th>N Misclassified</th>
<th>Percent Error</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious</td>
<td>8,558</td>
<td>2,275</td>
<td>26.58</td>
<td>0.27</td>
</tr>
<tr>
<td>Non-Serious</td>
<td>52,866</td>
<td>12,923</td>
<td>24.44</td>
<td>0.24</td>
</tr>
</tbody>
</table>

– 2/3 data for learning, 1/3 for testing

September, 2008

Copyright © Salford Systems 2008
Case Study: Worker’s Compensation
Predicting Serious Claims at Case Outset

- Model Assessment: Gains chart:

 - Data ordered from nodes with highest proportion of “serious” claims to lowest
 - Baseline is if model gave no useful information
 - Curve is cumulative percentage of “serious” claims versus the cumulative percentage of the total population
 - Difference between baseline and curve is the “gain”
 - The higher above baseline the better the model (larger gain)
Case Study: Modeling Total Projected Customer Value for a Health Insurer

- **Lifetime customer value**
 - Discounted present value of income less associated expenses

- **Develop model for total projected customer value**
 - Multiple sub-models:
 - Hospital claim frequency and cost for next year
 - Ancillary claim frequency and cost for next year
 - Transitions from one product to another
 - Births, deaths, marriages, divorces
 - Lapses
Case Study: Modeling Total Projected Customer Value for a Health Insurer

• Data used for hospital claim frequency and cost sub-model:
 – Covered a 36-month period
 – Predicted outcomes for next 12 months using data from previous 24 months

• About 300 variables as potential predictors:
 – Demographic (age, gender, family status)
 – Geographic and socio-economic (residence location, indices on education, advantage/disadvantage)
 – Membership and product (membership duration, product held)
 – Claim history and medical diagnosis
 – Miscellaneous data (distribution channel, payment method, etc.)
Hospital claim frequency and cost sub-model divided into two sub-models:
 – Predict probability of at least one claim over past 12 months
 – Predict cost given at least one claim

Data segregated with separate models
 – Claims lasting one day
 – Claims lasting more than one day with a surgical procedure
 – Other claims
Exploratory analysis
- Preliminary tree construction to uncover broad groups of data
- CART gave four groups according to age and previous experience

Build separate claims cost models for each group
- Using CART as a model segmentation tool
- Used MARS to build cost regressions

Results
- Similar predictors found among groups (age, hospital coverage type)
- Major differences in models across groups
 • Context dependence
Case Study: Modeling Total Projected Customer Value for a Health Insurer

- Joint CART/MARS 2 stage results
 - The top 15% of members predicted to have highest cost accounted for 56% of total actual cost
 - The top 30% of members predicted to have highest cost accounted for 80% of total actual cost
Case Study: Modeling Total Projected Customer Value for a Health Insurer

- Joint CART/MARS Results: Gains chart

![Gains Chart](chart.png)
Case Study: Modeling Total Projected Customer Value for a Health Insurer

- Two stage model Results:
 Average actual and predicted values for overall annual hospital cost

- Large differential between highest and lowest indicates a good model
- Model follows actual with a good fit
Case Study: Optimizing Premium Increases

- Australia’s 2nd biggest insurer (SunCorp Metway)
 - Modified rates after an acquisition to enforce uniformity
 - Some premiums increased, others decreased (subject to caps)
- Opportunity to study the impact of price changes
- Goal: Identify optimal capping rules for price increases

Graph:
- X-axis: premium change
- Bars indicate frequency among policies
- Blue line is retention rate
- Large premium changes (up or down) lead to lapse

Copyright © Salford Systems 2008
Case Study: Optimizing Premium Increases

- Model 1: Yes/No model for “did customer renew?”
- Data used
 - 12 months of renewal offers. Split 2:1 for training and testing
- Variables included
 - Age of insured
 - Other product holdings
 - Length of time with organisation
 - Distribution channel
 - Geographic Location
 - Age of vehicle/house
 - Method of Payment (Monthly/Annual)
 - Level of ‘No Claims Bonus’
 - Value of vehicle/house
 - Level of Deductible
- Price change not included as it was randomly distributed
Case Study: Optimizing Premium Increases

- Retention tree
- 7 segments
- Excludes price change
Case Study: Optimizing Premium Increases

- Tree translated

Group 1
 - NCD Step Back?
 - Group 2
 - Endorsement?
 - Group 3
 - Risk added mid term? (Renewal term different from last term)
 - Premium Payment Frequency
 - Annual
 - Monthly
 - NCD Level < 40%?
 - Number of previous renewals > 4?
 - NSW, QLD
 - Other
 - Vehicle Age < 8?
 - Driver age < 49?
 - Group 12
 - Group 13
 - Group 11
 - Group 10
 - Group 4
 - Multi-Product Holdings?
 - NCD Level < 40%?
 - Group 5
 - Number of previous renewals > 4?
 - Group 6
 - CTP Discount?
 - Group 7
 - Number of Previous Renewals < 1?
 - Group 8
 - Driver age < 42?
 - Group 9
 - Group 14
 - NCD < 40%?
 - Group 15
 - Business Rules
 - Group 8
 - Driver age < 42?
Probability of retention as a function of % price change, within CART segment

September, 2008

Copyright © Salford Systems 2008
Probability of retention as a function of $ price change, within CART segment
Case Study: Optimizing Premium Increases

• Results
 – Variable importance differed somewhat from business expectations
 – Notable absence of age of insured from early splits
 – Length of time with company of lower order importance than expected
 – Some variables were important in unexpected ways (like customers with multi-product holdings)
• Does the model work?
 – Even with extremely high cost of new business acquisition, the optimal result is achieved with NO capping
 – Model validated for three months following 12 months data period
 • Predictions matched well with actual results
 – Tree was easily explained to management
 – Some business expectations (myths?) were dispelled
 – Modelling assumptions were validated
Hybrid Case Study: MARS guided GLM

• Data used
 – Industry-wide auto liability data for Queensland, Australia
 – Individual claim data aggregated into the number of claims reported

• Potential predictors include
 – Accident month
 – Number of casualties
 – Number of vehicles in the calendar year
 – Number of vehicles exposed in the month
Hybrid Case Study: MARS guided GLM

• Initial GLM without MARS
 – Poisson model with log link
 – Number vehicles exposed in a month as offset
 – Manual transformation and interactions
 – Assessed with ratio of deviance to the degrees of freedom, predictor significance, link test and residual analysis
 – 5-7 days to generate

• Second GLM based on MARS variables and transforms
 – MARS model
 • ratio of incurred number of claims to number of vehicles exposed in the month as the dependent variable
 – Input resulting MARS basis functions to new GLM (same conditions as initial GLM)
 • Backward elimination to remove a small number of insignificant variables
 • Assessed with same methods as initial GLM
 – One hour to generate MARS-enhanced GLM

• Compare models with assessment results and gains charts
• MARS-enhanced modelling considerably faster and more efficient
• Performance and fit the same

Hybrid Case Study: MARS guided GLM
Hybrid Case Study: MARS guided GLM

- Gains chart
 - Equal performance
 - Gains tables indicate marginally better performance from MARS-enhanced GLM

- High degree of similarity in variable importance

- MARS-enhanced GLM picked up variable interactions not detected by hand-fit GLM
Hybrid Case Study: Retention Modeling

• Data
 – 198,386 records from the UK
 – Each record is one trial / outcome
 – Split 50/50 for training and testing

• 135 potential predictors
 – For GLM each variable is binned
 – 3,752 total levels across all variables

• Combine GLM and CART for one complete model
• Current practice by EMB for casualty insurance GLMs
Hybrid Case Study: Retention Modeling

- GLM (forward regression)
 - 57 significant predictors
 - Took a weekend to run
- CART
 - 24 significant predictors
 - Top 15 shared with GLM
 - Took one hour to run
- Final model has 26 predictors
 - 6 interactions found by CART
 - ROC values of 0.862 (training) and 0.85 (test)
• Combining CART, MARS, and GLM
 – CART: Select predictors, understand data
 – MARS: refine regressors
 – GLM: takes MARS basis functions as predictors

• Can also go from GLM to CART
 – Use CART to analyze GLM residuals

Optimal Model

Refined data set + Important variables

Basis functions

Residuals

Compare with other GLM models

Familiar results format

Familiar statistical analyses

September, 2008

Copyright © Salford Systems 2008
Salford Systems: R&D Staff and Academic Links

- **Dan Steinberg**, PhD Econometrics, Harvard (Data Mining)
- **Nicholas Scott Cardell**, PhD Econometrics, Harvard (Data Mining, Discrete Choice)
- **Jerome H. Friedman**, Stanford University (algorithm coder CART, MARS, Treenet, HotSpotDetector)
- **Leo Breiman**, UC Berkeley (algorithm developer, ensembles of trees, randomization techniques to improve trees)
- **Richard Olshen**, Stanford University (Survival CART, Tree-BasedClustering)
- **Charles Stone**, UC Berkeley (CART large sample theory)
- **Richard Carson**, UC San Diego (Visualization Methods, Super Computer methods)
Salford Systems: Selected Awards

- 2007 Winner of the DMA Analytics Challenge (targeted marketing)
- 2007 Grand Champion for the PAKDD Data Mining Competition
- 2006 First runner-up for the PAKDD Data Mining Competition
- 2004 First place for the KDD Cup (accuracy in particle physics)
- 2002 Winner of the Duke University/NCR Teradata CRM center data mining and modeling competition
- 2002 Jerome Friedman (developer of CART, MARS, TreeNet) awarded the ACM SIGKDD Innovation Award
- 2000 Winner of the KDD Cup 2000 International Data Mining competition
- 1999 Deming Committee winner of the Nikkei Prize for excellence in contributions to quality control in Japan
Salford Systems: Contact information

• Contact us to obtain the studies on which these slides were based

• Salford Systems world headquarters
 – info@salford-systems.com
 – 4740 Murphy Canyon Rd. Suite 200
 – San Diego CA, 92123
 – (619) 543-8880 (voice)
 – (619) 543-8888 (FAX)