

Risk Adjustment and Predictive Modeling for Medicaid

Rong Yi, PhD
Senior Scientist
Principal, Analytic Services

Promoting Fair and Efficient Health Care

Overview

- Medicaid management and business needs addressed by risk adjustment and predictive models
- DxCG's Medicaid models
 - Build
 - Performance
 - Application examples
- New research activities

Risk Adjustment and Predictive Models Can Help With Addressing Important Issues in Medicaid

Budgeting and Financial Forecast

- Medicaid budget crunches
 - Economy national and state
 - Federal budget
 - Medicaid-specific
 - Aging population
 - Reimbursement rate not keeping up with actual cost
 - Uncompensated care
- Need a more accurate and robust prediction of Medicaid program budget

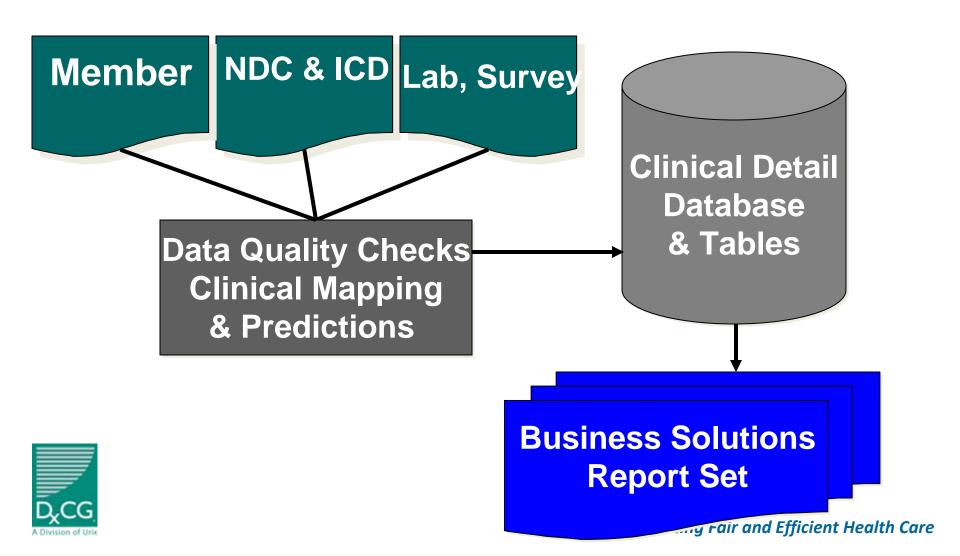
Special Populations

- Disabled/Blind early identification, move members to better benefit coverage, access issues, implications on budget and reimbursement
- High risk and high cost members for case and disease management, accurately identify before they actually become high cost
- Under and uninsured predict disease burden and resource use

Utilization Management

- Hospital admissions
- Emergency Department
- Pharmacy
- Imaging test

→ Need to set health-risk adjusted target measures


DxCG Medicaid Models in Product

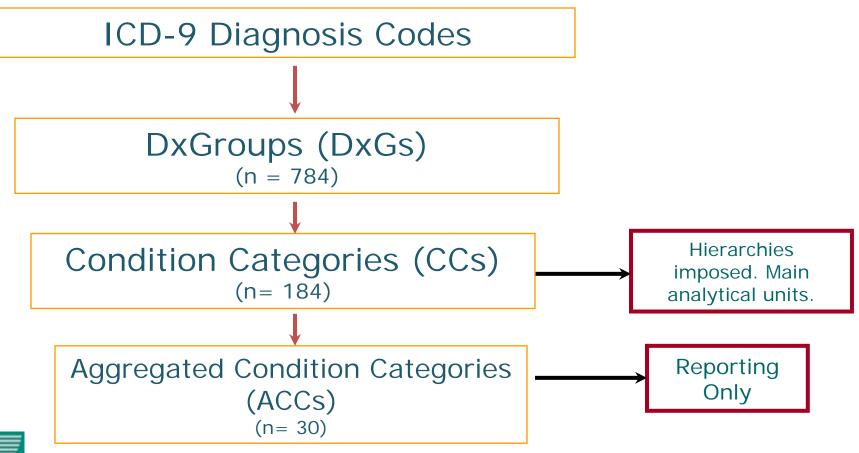
- Separate models for FFS and MC
- Diagnosis-based Medicaid DCG models most robust and serving general purposes (budgeting, risk stratification, UM)
 - Concurrent and prospective
 - Topcoded and untopcoded
- Rx-based Medicaid RxGroups models serving similar purposes when Dx data is problematic
 - Finer groupings for OTC drugs
 - Concurrent and prospective
 - Rx + IPHCC
- Medicaid LOH models case identification

The Building Blocks of DxCG's Medicaid Models

Software Processing

Model Input

- Enrollment information:
 - age, sex, eligible months, basis of eligibility (e.g., disabled)
- Claims information
 - Diagnosis
 - Procedures
 - Pharmacy
 - Long term care
 - Spending timing, categories
 - Utilization hospital, ED, specialty
- Not everything is used for prediction!
 - Depends on client needs, model's intended use, and the tradeoff between easy of use and added predictive accuracy


Organization of Clinical Information

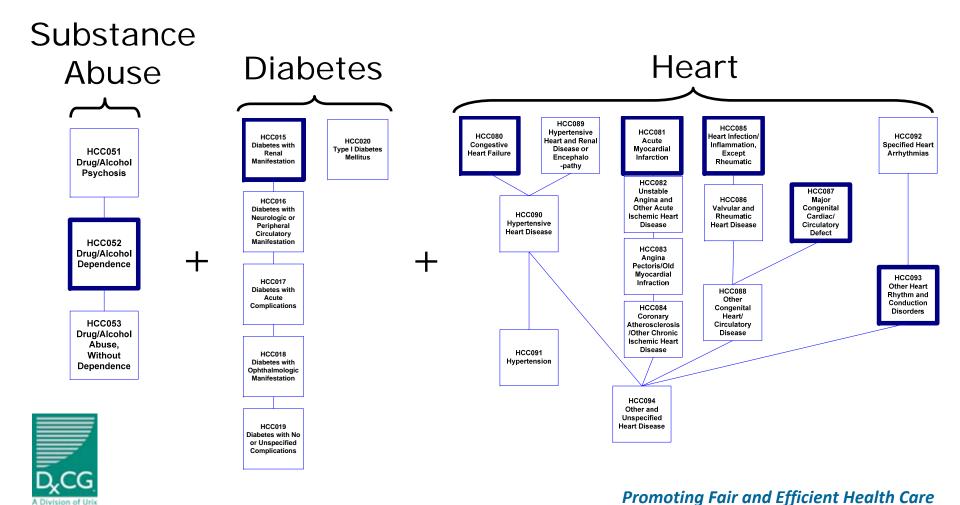
- Grouping ICD-9-CM diagnosis codes DCG/HCC
 - ICD-10 ready

- Grouping of NDC codes RxGroups
 - ATC (WHO drug codes) ready

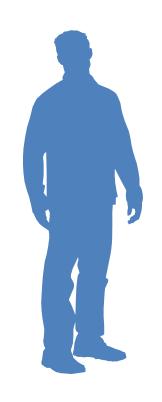
DCG/HCC Classification System

Diagnosis Grouping Example

ICD-9 410.01: Initial Anterolateral Acute MI DxGroup 81.01: acute myocardial infarction, initial episode of care CC 81: Acute Myocardial Infarction ACC 16: Heart



Hierarchical Condition Category (HCC) Example

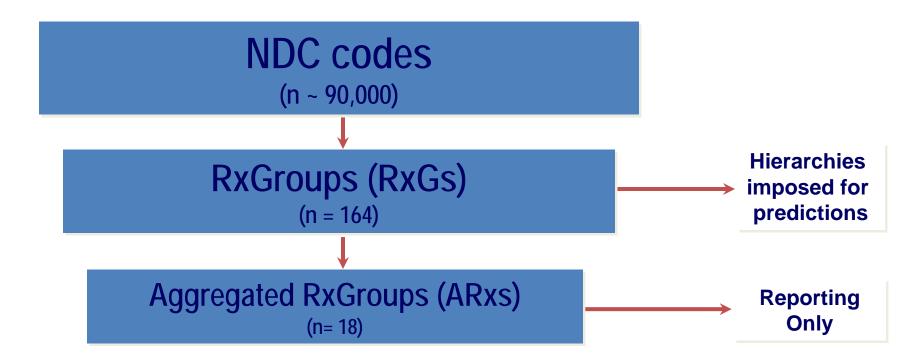

HCC007 Metastatic Cancer and Acute Leukemia HCC008 Lung, Upper Digestive Tract, and Other Severe Cancers HCC009 Lymphatic, Head and Neck, Brain, and Other Major Cancers HCC010 Breast, Prostate, Colorectal and Other Cancers and Tumors **HCC011 Other Respiratory and Heart Neoplasm HCC012** Other Digestive and Urinary Neoplasm **HCC013 Other Neoplasm** HCC014 Benign Neoplasm of Skin, Breast, Eve

Example: John Smith has Multiple Conditions

Risk Scoring using DCG/HCC

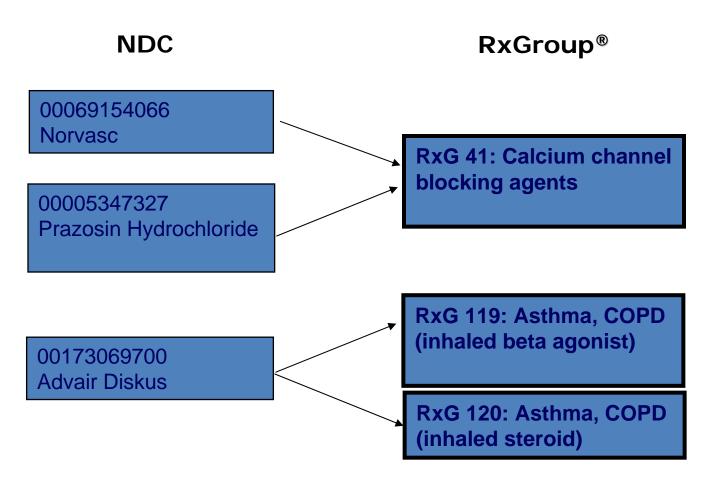
3.11x sicker than average Medicaid Managed Care enrollee **John Smith**

Age: 45


Sex: M

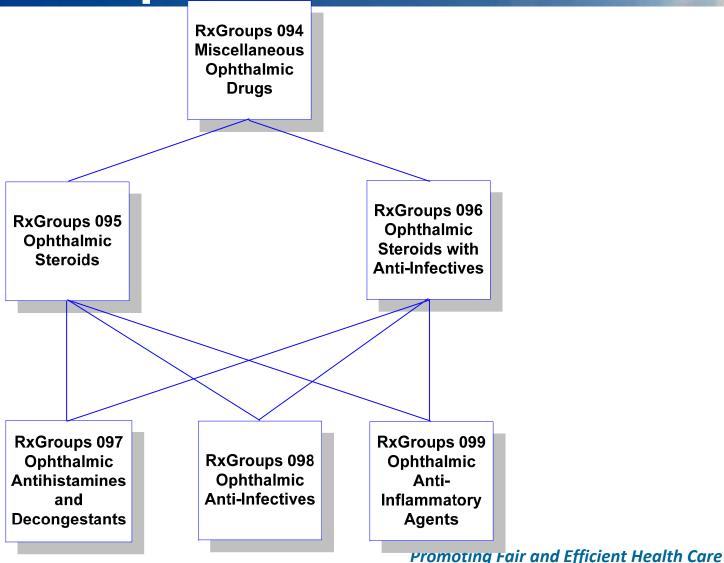
Eligible months: 7

- Hypertension
 - *****essential hypertension
- **☐** Type I Diabetes Mellitus
 - **≭**type I diabetes w/ renal manifestation
- Congestive Heart Failure
 - **⊁**hypertension heart disease, w/ heart failure
- **□** Drug/Alcohol Dependence
 - *alcohol dependence


Relative Risk Score: 3.11

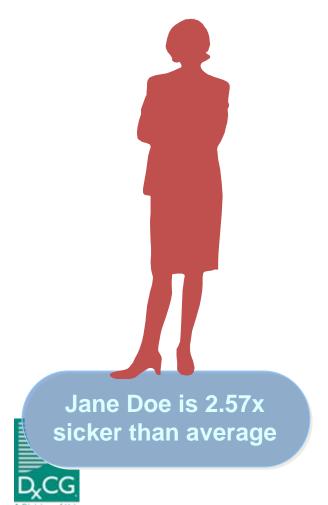
RxGroups® Clinical Classification System

RxGroups® Example


RxGroups® Simple Hierarchy Example: Diabetes

RxGroups 123 Insulin

RxGroups 124 Oral Diabetic Agents



RxGroups® Complex Hierarchy Example: Ophthalmic

Risk Scoring Using RxGroups®

Name: Jane Doe

Age: 43 Sex: F

Eligible months: 10

RxG 40: Beta-adrenergic blocking agents RxG 41: Calcium channel blocking agents

RxG 66: Insulin

2.57 RELATIVE RISK SCORE

Model Development Sample and Performance Statistics

Mass Medicaid Data 2003-2005 - sample size and cost -

Sample Size

	FFS		MC	
	Unique ID	Full Year Jnique ID Equivalent		Full Year Equivalent
Conc	1,431,313	1,032,083	2,477,242	1,988,997
Prosp	683,945	580,835	1,332,891	1,156,831

Average Cost

	FFS	MC
Conc	\$12,066	\$4,688
Prosp	\$13,143	\$4,614

Mass Medicaid Data 2003-2005 - age/sex distribution -

	Conc FFS	Prosp FFS	Conc MC	Prosp MC
Female	59.10%	60.21%	56.26%	57.47%
Male	40.90%	39.79%	43.74%	42.53%
Child: Age 0 to 17	24.25%	18.67%	48.82%	49.17%
Young Adult: Age 18 to 44	27.63%	24.68%	37.36%	36.68%
Older Adult: Age 45 to 64	17.36%	19.57%	13.26%	13.56%
Senior: Age 65+	30.76%	37.08%	0.56%	0.60%
Mean Age	44.47	49.57	22.59	22.88

Mass Medicaid Data 2003-2005 - selected ACC prevalence rates -

	Conc FFS	Conc MC
01: Infectious and Parasitic	655	1,557
02: Malignant Neoplasm	267	108
04: Diabetes	729	353
10: Cognitive Disorders	448	124
11: Substance Abuse	312	675
13: Developmental Disability	162	585
15: Cardio-Respiratory Arrest	150	63
16: Heart	1,659	807
17: Cerebro-Vascular	303	87
18: Vascular	552	159
21: Ears, Nose and Throat	1,155	3,314
23: Genital System	509	1,192
24: Pregnancy-Related	230	500
25: Skin and Subcutaneous	915	1,447
26: Injury, Poisoning, Complications	1,060	1,963
27: Symptoms, Signs and III-Defined Conditions	2,456	3,677
28: Neonates	14	300
30: Screening / History	1,890	5,559

Care

Model Performance (Prospective R²) - diagnosis based models -

	MA Medicaid FFS	MA Medicaid MC
DxCG DCG/HCC		
for Medicaid	25.21%	26.62%
CDPS		
unrecalibrated	2.42%	5.28%
CDPS		
recalibrated	17.74%	19.95%

The SOA 2007 Risk Adjustment Report has a similar finding.

Predictive Ratios

- diagnosis based model -
- Nearly perfect predictive ratios for subgroups:
 - Blind/disabled
 - Diabetes
 - Asthma
 - Mental health
 - Developmental disability

Model Performance (Prospective R²) - pharmacy based models -

	MA Medicaid FFS	MA Medicaid MC
DxCG RxGroups for Medicaid	24.11%	21.53%
DxCG Rx+IPHCC for Medicaid	29.38%	26.17%
Medicaid Rx unrecalibrated	8.81%	6.68%
Medicaid Rx recalibrated	18.21%	16.65%

Applicability to Other States

- Medicaid programs differ significantly from state to state. Experience may not be transferable from one state to another.
 - Coverage
 - Geography
 - Socioeconomic mix
 - Disease prevalence
 - Provider-specific factors

Applicability to Other States (cont.)

- Diagnosis-based models are the most robust
- Geographic differences in Medicaid MC are much less pronounced
- Depending on state programs and data, certain recalibration may be needed
 - Compare prevalence rates
 - Do simple goodness-of-fit tests

Model Application Example 1

 Budgeting and Resource Allocation (Medicaid DCG/HCC Model)

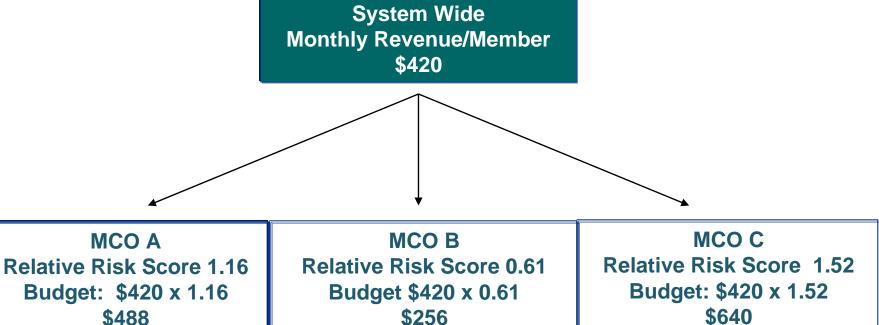
Which Managed Care Organizations Care for a sicker Population?

	System-wide	MCO A	MCO B	MCO C
PMPM Expenditures	\$420	\$456	\$352	\$724
Age/Sex Relative Risk Score	1.00 (normalized to sample)	1.15	0.64	1.22
Diagnosis- Based Relative Risk Score	1.00 (normalized to sample)	1.16	0.61	1.52

What Accounts for Differences in Health Status?

Rate Per 10,000 Selected CCs

Diabetes With	System- wide	MCO A	мсо в	MCO C
Neurologic or Periph. Circ. Manifestations	24	16	8	169
Ophthalmologic Complications	22	21	12	141
No or Unspecified Complications	170	166	68	410



Which Managed Care Organizations Are "More Efficient?"

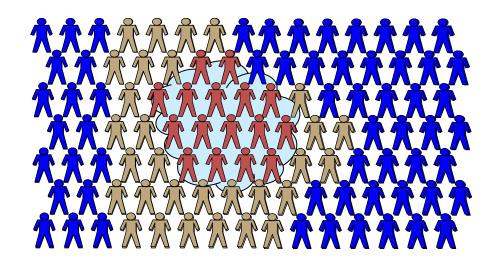
PMPM Expenditures	System- wide	MCO A	MCO B	MCO C
Observed	\$420	\$456	\$352	\$724
Expected	\$420	\$488	\$256	\$640
Observed/ Expected	1.00	0.93	1.38	1.13

How Should We Allocate Resources?

* Further adjustments may be needed

Multi-Year Budgeting and Planning

- Predictions need to be based on
 - State and federal coverage expansion
 - Socioeconomic mix of future enrollment
 - Aging
 - Disease prevalence, pharmacy use, utilization
 - Efficiency and cost-saving initiatives
 - Medical inflation and adjustments to reimbursement rates


Model Application Example 2

- Identification for Case Management (Likelihood of Hospitalization Model)

Point Solutions: Finding the Target Population for Intervention

- Assess the health status of the population
- Identify the group of individuals at <u>high risk</u> of future utilization or poor health outcomes
- Focus on the subset of people that case managers believe they can <u>impact</u> through a defined intervention

LOH Model Improves the Identification and Prioritization of Individuals for Case Management

Traditional Approach	LOH Model Approach
Focus on members who are already in the hospital	Use statistical methods and clinical algorithms to identify members who are <i>likely</i> to be hospitalized
Arrange follow up services during the admission	Coordinate services <u>prior</u> to incurring an admission
Select people with high prior costs and a long length of stay for case management	Identify potential <u>avoidable</u> admissions <u>in time</u> for actionable intervention

LOH Model Data Period and Model Structure

Model Variables

Prospective DCG risk score
Utilization pattern
Cost trend over 12 months
Evidence of various medical conditions
And other factors

How to Use the LOH Model

- Take the probability score as is and select based on cutoff points
- Use the scores for sorting and ranking
- Look at changes in scores over time

Model Performance Measures

Model and Threshold	Number of people correctly identified Positive Predictive Value		Number of admissions by Individuals Correctly Identified	Rate of Admission per Individual Correctly Identified	Number of Admissions for the study population with the Exclusion of selected categories	Percent of All Admission s in the Prediction Period generated by the target List	
Top 0.5 percent: 10,512	3,267	31.1%	5,909	1.8	63,945	9.2%	
Top 1 percent: 21,024	5,094	24.2%	8,780	1.7	63,945	13.7%	

Many Individuals on the List Have Chronic Medical Conditions

Chronic Medical Conditions	Prevalence Rate				
Diabetics	31.8%				
Congestive Heart Failure	31.0%				
COPD	25.3%				
Coronary Artery Disease	17.8%				
Asthma	15.5%				
Cerebrovascular Disease	10.0%				

Top Rank Members Have Multiple Admissions in the Prediction Period

Adm/Person in the 6 month period	Frequency Distribution	Percent of the Target Population
1	2,144	65.6%
2	714	21.9%
3	276	8.4%
4	91	2.8%
5	28	0.9%
6	8	0.2%
7	4	0.1%
8	2	0.1%
Total Members	3,267	

Age Distribution of People Identified Prospectively

Distribution of members correctly identified among the top 1 percent of members most likely to be hospitalized

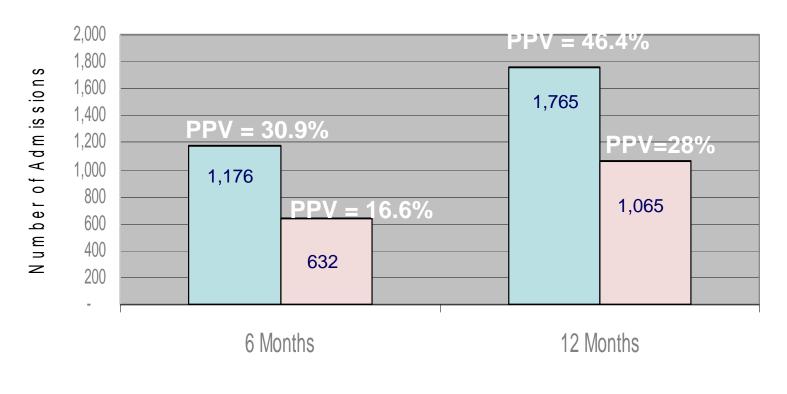
Cohort	Males	Females
Age 0-5	0.4%	0.6%
Age 6-12	0.3%	0.3%
Age 13-17	0.4%	0.2%
Age 18-24	0.6%	0.4%
Age 25-34	2.1%	0.4%
Age 35-44	6.0%	1.6%
Age 45-54	13.8%	7.8%
Age 55-64	24.6%	26.1%
Age 65+	7.0%	7.4%
Total	55.2%	44.8%

Many Admissions are Amenable to Management in the Outpatient Setting

DRG	DRG Description	Frequency Count	Percent Adm At Risk Pop
127	HEART FAILURE & SHOCK	219	4.38%
88	CHRONIC OBSTRUCTIVE PULMONARY DISEASE	132	2.64%
89	SIMPLE PNEUMONIA & PLEURISY AGE >17 W CC	129	2.58%
182	ESOPHAGITIS, GASTROENT & MISC DIGEST DISORDERS AGE >17 W CC	128	2.56%
430	PSYCHOSES	99	1.98%
296	NUTRITIONAL & MISC METABOLIC DISORDERS AGE >17 W CC	96	1.92%
144	OTHER CIRCULATORY SYSTEM DIAGNOSES W CC	89	1.78%
468	EXTENSIVE O.R. PROCEDURE UNRELATED TO PRINCIPAL DIAGNOSIS	83	1.66%
143	CHEST PAIN	81	1.62%
316	RENAL FAILURE	71	1.42%
124	CIRCULATORY DISORDERS EXCEPT AMI, W CARD CATH & COMPLEX DIAG	69	1.38%
183	ESOPHAGITIS, GASTROENT & MISC DIGEST DISORDERS AGE >17 W/O CC	63	1.26%
82	RESPIRATORY NEOPLASMS	60	1.20%
209	MAJOR JOINT & LIMB REATTACHMENT PROCEDURES OF LOWER EXTREMITY	60	1.20%
416	SEPTICEMIA AGE >17	60	1.20%
478	OTHER VASCULAR PROCEDURES W CC	60	1.20%
462	REHABILITATION	59	1.18%
130	PERIPHERAL VASCULAR DISORDERS W CC	58	1.16%
132	ATHEROSCLEROSIS W CC	53	1.06%
517	PERC CARDIO PROC W NON-DRUG ELUTING STENT W/O AMI	53	1.06%
294	DIABETES AGE >35	52	1.04%
410	CHEMOTHERAPY W/O ACUTE LEUKEMIA AS SECONDARY DIAGNOSIS	50	1.00%
14	INTRACRANIAL HEMORRHAGE & STROKE W INFARCT	49	0.98%
96	BRONCHITIS & ASTHMA AGE >17 W CC	49	0.98%

Case Example:

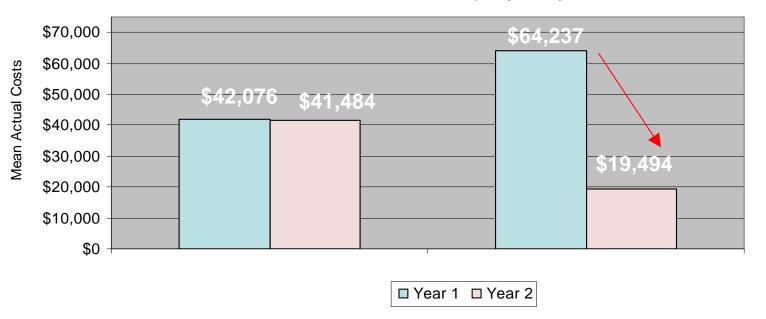
Multiple Admissions in the 6 Month Prediction Period


50 Year Old Female with Diabetes and Unstable Angina

DRG	Admission Description
416	SEPTICEMIA AGE >17
277	CELLULITIS AGE >17 W CC
96	BRONCHITIS & ASTHMA AGE >17 W CC
182	ESOPHAGITIS, GASTROENT & MISC DIGEST DISORDERS AGE >17 W CC
294	DIABETES AGE >35
296	NUTRITIONAL & MISC METABOLIC DISORDERS AGE >17 W CC
213	AMPUTATION FOR MUSCULOSKELETAL SYSTEM & CONN TISSUE DISORDERS
113	AMPUTATION FOR CIRC SYSTEM DISORDERS EXCEPT UPPER LIMB & TOE

Comparison between Individuals Identified by LOH Model and Traditional Means

LOH has a 14.3% higher predictive accuracy in the 6 month prediction period and a 18.4% higher value in the 12 month prediction period



Comparison between Individuals Identified by LOH Model and Traditional Means

Costs for the Non Overlapping Individuals on the Combined List drop by 70% in Year 2. By contrast, the non overlapping Individuals on the LOH List drop by only 1% in Year 2

Comparing Changes in LOH Scores Overtime

Lo	igged in	as Rong	g Yi		Dashboard Onl	ine Analy	tics Executive	Reporting Sche	duled Report	ing Pub	lished Reports	CaseS
	Client	List	CaseList	Filtering	Help							
Va	Unfilt	tered LOH Rank		Patient Name	Patient ID	LOH Score	Change In LOH Score	Predicted Monthly Cost	Hospital-	ER: Visits	Distinct Drugs	
	(I)	1	MAXX, GEXX	XX	041XXXXXXXXX	.92	.82	\$15,179	0	3	41	No
	(I)	2	KEXX, LEXXX	ox	041XXXXXXXX	.82	.41	\$3,581	0	2	43	N
	1	3	TDXXXX, BOXXXX		041XXXXXXXX	.77	.01	\$13,883	2	1	7	No
	(i)	4	GLXXX, GEX	xxx	041XXXXXXXX	.70	(.22)	\$5,400	1	2	37	N
	(I)	5	MCXXXXX, THXXXXX		041XXXXXXXX	.65	.49	\$3,676	4	7	31	N
	(i)	6	MAXXXXXXX, CAXXXXXX		041XXXXXXX	.63	.27	\$4,454	3	2	32	N
	(i)	7	YOXXX, GAXXXX		041X000000X	.61	.10	\$7,577	2	1	36	N
	(i)	8	PAXXXXXXXX, EDXXX		050XXXXXXX	.59	.53	\$5,589	1	2	53	N
	1	9	HAXXXXXXXX	C, KHXXXXXX	050XXXXXXX	.58		\$4,754	2	4	21	N
	(i)	10	DOXXX, MAX	ooxx	041XXXXXXXX	.56	.11	\$7,111	1	1	27	N

Change page: < 1 2 3 4 5 6 7 8 9 10 ... > | Displaying page 1 of 3121, items 1 to 10 of 31208.

Please select a member by clicking on a member row above.

New Research Efforts

- Client input DxCG has a client-driven research agenda
- Data from other states
- Medicaid ER use
- Early identification of disabled members
- Under and un-insured

Questions and Comments?

Rong.Yi@dxcg.com

Or

info@dxcg.com

617.303.3790

800.431.9807

