

A Claims-Based Predictive Model to Identify Orthopedic Surgeries

Stephen O. Crawford, PhD, MHS Senior Outcomes Analyst

Shantanu Phatakwala, MS Senior Outcomes Analyst

Constance W. Hwang, MD, MPH Director of Clinical Affairs & Analytics

Overview of Resolution Health, Inc. (RHI)

Glidepath predictive modeling

- Potential targets: preference-sensitive procedures
- Clinical rationale

....

Intervention framework

Methods, results & performance

- Low back surgery Glidepath
- Knee replacement surgery Glidepath

Resolution Health

Our Mission

Send a smarter patient to the doctor.

Provide a more informed doctor to the patient.

RHI Data Analytics

Purpose of Glidepath Predictive Models

Objective:

 Help patients to be fully informed prior to making decisions about preference-sensitive elective procedures

Approach:

 Identify patients with high likelihood of proceeding to surgery utilizing logistic regression methods based on administrative claims data

Goal:

 Targeted patient-centric interventions for informed medical decision making

Glidepath Process

 Identify patients with high likelihood of undergoing preference-sensitive orthopedic surgery well in advance of the procedure

 Use multiple access channels to deliver the right intervention to the right member at the right time

- Monitor patient outcomes and report performance
- Modify future intervention strategies based on results

Trends in Musculoskeletal Procedures

Unwarranted Variation

Increased Utilization

Figure 1. Trends in knee arthroplasty, hip replacement, and spinal fusion procedures, 1997-2005*

*Based on all-listed procedures.

Source: AHRQ, Center for Delivery, Organization, and Markets, Healthcare Cost and Utilization Project, Nationwide Inpatient Sample 1997-2005

www.dartmouthatlas.org/topics/preference sensitive.pdf

Variation in Low Back Surgery Rates

Impact of low back pain

70%	Low back pain prevalence ¹					
10.2%	Chronic low back pain prevalence ²					
650,000 _{and} \$20 Billion	Low back surgeries and health care spending ³					
\$16.9 B	Lost productivity dollars ⁴					

1 Bernard BP, NIOSH: Musculoskeletal Disorders and Workplace Factors, 1997

- 2 Carey T, Chronic Low Back Pain Is on the Rise, Archives of Internal Medicine, Feb 2009
- 3 Katz JN, Cost-Effectiveness of Spine Surgery: The Jury is Out, Annals of Internal Medicine, Dec 2008
- 4 Ricci J, Back Pain Exacerbations and Lost Productive Time Costs in US Workers, Spine Journal, Dec 2006

Non-surgical Approaches are Effective

- Current LBP guidelines from the American College of Physicians (ACP) and American Pain Society (APS) emphasize patient education, selfmanagement, pharmacologic and nonpharmacologic therapies before surgical referral
- A 2007 systematic review of 4 randomized trials comparing lumbar fusion to nonoperative care for chronic back pain found only a modest difference in pain and functional outcomes at 1 and 2 years (Mirza and Deyo)
- The Spine Patient Outcomes Research Trial (SPORT) 2006-2008:
 - Challenges in interpreting RCT results due to high cross-over rates
 - Considerable pain improvement with either surgery or conservative low back therapies for herniated disk, with surgery at slight advantage
 - Spinal stenosis saw earlier and greater pain reduction with surgery; however, patients who choose not to have surgery were also likely to improve over time

Calculating Glidepath Score

Mr. Smith

Glidepath Process

- Identify patients with high likelihood of undergoing preference-sensitive orthopedic surgery well in advance of the procedure
- Use multiple access channels to deliver the right intervention to the right member at the right time

 Monitor patient outcomes and report performance
 Modify future intervention strategies based on results

Glidepath Intervention Framework

Health"

Resolution

Low Back Surgery Glidepath Model

Study Population and Patient Identification

Study Population

 Administrative claims data for 1.2 million health plan members between November 1st, 2005 – October 31st 2008

Patient Identification

- Based on previously published definition of mechanical low back problems, which describes ICD-9 codes for pain conditions originating in lumbar and sacral spine (Cherkin, Deyo, et al.)
- Excluded patients with complications due to: pregnancy; major trauma; revision of previous back surgery; hospice care, and neoplastic, infectious, or inflammatory etiologies

Dependent Variable

- CPT4 codes for lumbar spine surgery
 - laminectomy, discectomy, spinal fusion and disc arthroplasty

Independent Variables

- Demographics: age, gender, zip code
- Radiology: XR, CT, MRI

- <u>Medical conditions</u>: sciatica, neurologic deficit, spinal stenosis, Cauda equina syndrome
- Medications: NSAIDs, muscle relaxants, narcotics, benzodiazepines
- <u>Treatments</u>: Physical therapy, occupational therapy, epidural steroid or anesthetic injections
- <u>Co-morbidities</u>: depression, obesity, rheumatoid arthritis, Elixhauser score
- Visits for low back pain: office, ER, inpatient hospitalization

Model Framework

- Index visit: earliest visit for LBP identified in claims
- <u>Surveillance</u>: 60 day window during which predictors for surgery were identified
- **<u>Prediction period</u>**: Period of time when LBP surgeries were observed

A. Earliest index visit

Statistical Analysis Overview

- Performed analysis using logistic regression to identify predictors of surgery such as demographic, clinical, and service utilization variables
- Used split-sample method for model development and validation by randomly allocating patients into development (67%) and validation (33%) datasets
- Developed score index from the final model that assigns weights based on the relative strength of each significant predictor

- 34,044 (2.8%) patients identified with an episode of uncomplicated LBP
 - 2078 (6.1%) proceeded to back surgery within 34 months of the LBP index visit
 - patients who proceeded to surgery were less likely to be women

Characteristics *	Surgery (n=2078)	No Surgery (n=31,966)	% Diff	Adj. Odds Ratio	p			
Demographics								
Women (%)	48.2	55.3	-7.1	0.79	+			
Men (%)	51.8	44.7	7.1	1.0 (Ref)				
Age (mean in years)	48.9	49.8	-0.9	0.99	+			
† p ≤ 0.001								
* Model adjusts for age, gender, MRI, NSAIDs, narcotics, spinal stenosis, sciatica, and office visits								

- NSAID and narcotics utilized far more among patients proceeding to surgery
- Use of pain management injections more than 2-fold higher among patients proceeding to surgery

	Surgery	No Surgery		Adj. Odds	
Characteristics *	(n=2078)	(n=31,966)	% Diff	Ratio	р
Prescribed medications					
NSAIDs					
1	15.4	10.8	4.6	1.30	+
≥ 2	9.9	5.3	4.5	1.63	+
Narcotics					
1	14.1	6.8	7.3	1.86	+
≥ 2	12.7	8.6	4.2	1.45	+
Treatments				_	
Pain management inject	ions				
1	16.2	6.2	10.0	1.96	+
≥ 2	7.5	2.0	5.5	2.84	+
† p ≤ 0.001					
* Model adjusts for age, gender,	MRI, NSAIDs, r	narcotics, spinal s	tenosis, scia	tica, and office v	visits

- Spinal stenosis and sciatica were strong predictors of low back surgery
- Patients with follow-up office visits were very likely to undergo surgery

Characteristics *	Surgery (n=2078)	No Surgery (n=31,966)	% Diff	Adj. Odds Ratio	р
Medical conditions					
Stenosis	18.0	6.0	12.0	2.45	+
Sciatica	14.4	7.5	6.9	1.49	+
Physician encounters					
Office visits					
1	41.7	27.5	14.1	1.59	+
≥ 2	19.0	10.1	8.9	1.67	+
Diagnostic					
MRI	37.6	19.6	18.0	1.52	+
† p ≤ 0.001					

* Model adjusts for age, gender, MRI, NSAIDs, narcotics, spinal stenosis, sciatica, and office visits

Resolution Realth"

Final Regression Model

Strongest predictor

Receipt of pain management injections

Other significant predictors

- Prescriptions for NSAIDs & narcotics
- Diagnoses of spinal stenosis & sciatica
- MRI imaging

- Follow-up office visits
- Gender and Age

Final Regression Model

Variable	OR 95% CI	
4.50	0.00 /0.00 /	
Age	0.99 (0.99, 0	
Women	0.79 (0.72, ().86)
NSAIDS		
1	1.3 (1.14, 1	1.49)
≥ 2	1.63 (1.39, 1	1.92)
Narcotics		
1	1.86 (1.62, 2	2.14)
≥ 2	1.45 (1.26, 2	1.68)
MRI (Yes/No)	1.52 (1.37, 2	1.70)
Pain management injections		
1	1.96 (1.71, 2	2.24)
≥ 2	2.84 (2.38, 3	3.45)
Sciatica (Yes/No)	1.49 (1.32, 1	1.68)
Spinal Stenosis		
1	2.45 (2.18, 2	2.8)
≥ 2	2.51 (1.99, 3	3.18)
Follow-up office visits		
1	1.59 (1.43, 1	1.77)
≥2	1.67 (1.48, 1	1 92)

Patients with higher scores are more likely to undergo surgery
Model enables us to identify patients at various risk thresholds

Intervention		Identified (TP		Specific		
Intensity	Score	+ FP)	Sensitivity	ity	PPV	NPV
	≥ 1.5	2264	23.1	94.7	22.2	95.0
	≥ 1.4	2558	26.5	93.6	21.1	95.1
High	≥ 1.3	3113	29.6	92.2	19.9	95.3
ingn	≥ 1.2	3660	33.2	90.7	18.8	95.4
	≥ 1.1	4188	36.2	89.0	17.7	95.6
	≥ 1.0	5133	40.4	86.9	16.7	95.7
	≥ 0.9	5668	44.4	84.5	15.7	95.9
	≥ 0.8	6967	48.5	81.8	14.8	96.1
	≥ 0.7	7501	52.7	78.8	13.9	96.3
Low	≥ 0.6	9487	57.4	75.3	13.1	96.5
LOW	≥ 0.5	10264	62.1	71.3	12.3	96.7
	≥ 0.4	12090	65.9	66.8	11.4	96.8
	≥ 0.3	13439	70.2	61.6	10.6	96.9
	≥ 0.2	15805	73.9	56.4	9.9	97.1

High risk threshold: score \geq 1.0

1 in 6 (16%) of *high* risk members undergo surgery

		Surgeries			
		Yes	No		PPV
Glidepath	≥ 1.0	840	4293	5133	16.4
score	< 1.0	1238	27673	28911	
		2078	31966	-	

40% of total surgeries identified

			Surgeries			
			Yes	No		Sensitivity
	Glidepath	≥ 1.0	840	4293	5133	40.4
	score	< 1.0	1238	27673	28911	
_			2078	31966		
			Resolution (R Health		

Low risk threshold: score ≥ 0.2

1 in 10 (10%) of *low* risk members undergo surgery

			Surgeries			
_			Yes	No		PPV
	Glidepath	≥ 0.2	1536	14269	15805	9.7
	score	< 0.2	542	17697	18239	
-			2078	31966	-	

74% of total surgeries identified

			Surgeries			
			Yes	No		Sensitivity
	Glidepath	≥ 0.2	1536	14269	15805	73.9
	score	< 0.2	542	17697	18239	
-	-		2078	31966		
		111.11.111	Decelution 6			

Resolution

Time to Low Back Surgery

Knee Replacement Glidepath Model

Need for Knee Replacement Alternatives

Procedures: 1990 – 2002

Kurtz et al. J Bone Joint Surg Am. 2005 Jul;87(7):1487-97

- Primary knee arthroplasty surgeries (TKA) increased from 129,000 to 402,000 from 1990 to 2003
- By 2030, the demand for primary TKRs is projected to grow by 673% to 3.48 million procedures per year
- Alternative therapies which can postpone or prevent the need for knee replacement surgery include:

- Pharmacological modalities
- Referral to a physical therapist
- Exercise and weight loss

Study Population and Patient Identification

Study Population

 Administrative claims data for 1.2 million health plan members between November 1st, 2005 – October 31st 2008

Key Variables Specific to Knee

Dependent Variable

Knee arthroplasty or hemi-arthoplasty

Independent Variables

- Treatments: Knee injections, physical therapy, casting, knee orthosis
- <u>Medical conditions</u>: Knee derangements, inflammation, late effects of injury
- Knee procedures: Arthroscopy, debridement synovectomy, meniscus, patella

Results

Knee replacement surgery									
	Yes	Νο							
Characteristics	(n=1,574)	(n=10,781)	% Diff	Adj. OR *	р				
Demographics									
% Women	60.8	59.1	1.7		0.191				
% Men	39.2	40.9	1.7		0.191				
Age group (years)									
<45	2.0	15.6	-13.6	0.22	+				
45-54	21.0	31.8	-10.7	1 (Ref)					
55-64	49.4	35.0	14.4	2.03	+				
≥ 65	27.5	17.6	9.9	2.04	+				

† p \leq 0.001

* Model adjusts for age, X-rays. MRI, NSAID & narcotic use, knee injections, physical therapy, office visits, and knee derangements

- 1,574 (12.7%) proceeded to knee replacement surgery within 34 months of index visit
- Adults 55 and older were 2 times more likely to proceed to surgery compared to 45-55 year olds

Results

	14							
Knee replacement surgery								
	Yes	Νο						
Characteristics	(n=1,574)	(n=10,781)	% Diff	Adj. OR *	p			
Prescribed medications								
NSAIDs								
1	13.5	14.2	-0.7	0.96	0.643			
≥ 2	13.2	8.1	5.1	1.40	+			
Narcotics	13.0	8.8	4.2	1.42	+			
Treatments								
Knee injections								
1	8.3	6.3	2.0	1.46	+			
≥ 2	30.9	18.5	12.4	1.83	+			
Physical therapy	9.9	15.8	-5.9	0.72	+			
† p ≤ 0.001								

* Model adjusts for age, X-rays. MRI, NSAID & narcotic use, knee injections, physical therapy, office visits, and knee derangements

- Higher utilization of NSAIDS and narcotics among surgeries
- Proportion of patients requiring knee injections 14% greater among surgeries (39% vs. 25%)
- Physical therapy far less common in those heading towards surgery

Results

	Knee rep	lacement sur	gery		
	Yes	No			
Characteristics	(n=1,574)	(n=10,781)	% Diff	Adj. OR *	р
Radiology					
X-Rays	51.3	48.5	2.8	1.21	+
MRI	8.4	20.1	-11.7	0.49	+
Physician encounters					
Office visits (Yes/No)	45.0	40.3	4.7	1.18	0.006
Medical conditions					
Knee derangements					
1	7.5	13.2	-5.7	0.60	+
≥ 2	9.8	17.7	-7.9	0.76	+
† p ≤ 0.001					

* Model adjusts for age, X-rays. MRI, NSAID & narcotic use, knee injections, physical therapy, office visits, and knee derangements

- 21% higher odds of surgery among members with an X-Ray image
- 51% *lower* odds of surgery among members with an MRI image
- Knee derangements 13.6% less common among surgery patients

Final Regression Model

Strongest individual predictor

Receipt of knee injections

Other positive predictors:

- Age 55 or older
- Prescriptions for NSAIDs & narcotics
- Follow-up office visits
- X-ray imaging

Negative predictors:

MRI imaging

- Physical therapy
- Knee derangements

Final Regression Model

1 - Specificity

Classification table

Intervention		Identified				
Intensity	Score	(TP + FP)	Sensitivity	Specificity	PPV	NPV
	≥ 1.5	570	11.1	96.3	30.7	88.1
	≥ 1.4	970	17.5	93.5	28.5	88.5
High	≥ 1.3	1308	22.6	91.1	27.2	88.9
	≥ 1.2	1703	27.9	88.2	25.8	89.3
	≥ 1.1	1851	29.6	87.1	25.2	89.4
	≥ 1.0	2707	42.1	80.9	24.5	90.5
	≥ 0.9	3587	52.3	74.2	22.9	91.4
	≥ 0.8	3988	55.9	71.0	22.1	91.6
Low	≥ 0.7	5359	69.6	60.2	20.4	93.1
	≥ 0.6	5679	73.0	57.7	20.2	93.6
	≥ 0.5	6163	77.1	53.8	19.7	94.1
	≥ 0.4	6403	79.5	51.9	19.6	94.5

High risk threshold: score \geq 1.1

1 in 4 (25%) of *high* risk members undergo surgery

30% of total surgeries are identified

		Surg	eries		
		Yes	No		Sensitivity
Glidepath	≥ 1.1	466	1385	1851	29.6
score	< 1.1	1238	9396	10504	
		1574	10781		
	Res		Health		

Low risk threshold: score ≥ 0.4

1 in 5 (20%) of *low* risk members undergo surgery

80% of total surgeries are identified

Glidepath ≥ 0.4	Yes	No
Glidepath ≥ 0.4	4252	
	1252	5151
score < 0.4	322	5630
	1574	10781

Resolution

Health"

Time to Knee Replacement Surgery

Innovative application of predictive modeling

- Predicting discretionary procedures rather than costs
- Identifying patients well in advance of surgery

Models built on administrative claims data

Readily available and wide applicability

Targeted patient-centric interventions

Improves medical decision making

Address unwarranted variation in surgery rates

Avoid potential overuse of procedures

Administrative claims data are not clinically rich

- Utilization of HRA and lab data in future models
- Incorporation of pre-authorization data (e.g. MRI)

Models built on commercial health care population claims data

Expansion of models to include Medicare population

Statistical modeling approaches to consider

Inclusion of time-dependent covariates

....

Next Steps

- Identify patients with high likelihood of undergoing preference-sensitive orthopedic surgery well in advance of the procedure
- Use multiple access channels to deliver the right intervention to the right member at the right time

 Monitor patient outcomes and report performance
 Modify future intervention strategies based on results

Thank you

