Using Predictive Models to Move Medicaid Providers Toward Best Practices and Reduce Waste

Predictive Modeling Summit

Gary Redding, Vice President and Practice Leader, Thomson Reuters
Michelle McAllister, Consulting Manager, Thomson Reuters
AGENDA

• Thomson Reuters

• Using Predictive Models to Move Medicaid Providers Toward Best Practices and Reduce Waste

• Questions and Discussion
Thomson Reuters

Gary Redding, Vice President and Practice Leader, Thomson Reuters
Knowledge To Act

Thomson Reuters is the world’s leading source of intelligent information for business and professionals.

HEALTHCARE & SCIENCE

- Integrated decision support solutions for improving clinical and business performance
- Insights for better healthcare touching 150 million lives
- We are known for our:
 - Independence
 - Objectivity
 - Reliability
Many U.S. hospitals

GE, FedEx, GM, Ford, Boeing, Corning, Dow

200+ Employers

100+ Health Plans

CIGNA, Paramount, Emblem, Humana, Numerous BCBS plans

Federal Government

CMS, AHRQ, CDC, SAMHSA, VA, DOD

11 state employers
28 Medicaid agencies
8 HHS agencies

State Government

All major U.S. pharma companies

3,000+ Hospitals

Pharma

UNPARALLELED EXPERTISE ACROSS THE SPECTRUM OF HEALTHCARE
A Trusted Partner to Government and Non-Profits

Federal Government
- CMS
- AHRQ
- CDC
- SAMHSA
- VA
- DOD
- Medpac

State Government
- 28 Medicaid agencies
- 11 state employers

Research & Non-Profit
- AARP
- AcademyHealth
- Bridges to Excellence
- California Cooperative Healthcare Reporting initiative
- IHA (Integrated Healthcare Association)
- Pacific Business Group on Health
- Midwest Health Initiative (St. Louis)
- Robert Wood Johnson Foundation
- Others
Medicaid Customers

[Map of the United States highlighting states with Medicaid customers.]

©2009 Thomson Reuters
OUR VALUE

PROVIDING INTELLIGENT INFORMATION TO MAKE BETTER DECISIONS FASTER

MANAGING DATA
400+ Sources, SAS 70 Certified

MEASURING PERFORMANCE
Quality Measurement, P4P, Physician Measurement

ENGAGING CONSUMERS
Consumer Advantage, Informed Enrollment

DECISION SUPPORT
Clinical and Management Reporting, Modeling, Analysis

CONSULTING ANALYTICS
Subject Matter Experts, Account Team

BENCHMARKING & NORMS
3,000 Measures, 69 Million Lives, PULSE Survey

REFERENTIAL DATA
Clinical, Drug, Disease, Poison, Toxicology
We Help Our Customers . . .

- Analyze state and national trends
- Profile provider performance
- Monitor population health
- Fight Fraud, Abuse, Waste and Overpayment
- Improve clinical performance and outcomes
- Forecast, monitor and manage healthcare costs

- Oversee vendor contracts
- Support care management
- Formulate payment policy
- Launch cost control strategies
- Support prevention programs
- Answer any healthcare program question
Using Predictive Models to Move Medicaid Providers Toward Best Practices and Reduce Waste

Michelle McAllister, Consulting Manager, Thomson Reuters
Overview

• Context
 – What is Predictive Modeling?
 – History of Predictive Modeling

• How it Works
 – Predictive Modeling Basics
 – A Useful Approach to Predictive Modeling and Targeting

• Case Studies: Applications in Moving Providers Toward Best Practices and Reduce Waste
What is Predictive Modeling?

- Use of demographic, diagnostic, and utilization information, with analytic models to predict:
 - Beneficiaries who will be high-risk/high-cost in the future
 - Future costs
 - Future utilization
 - Influence Best Practices
 - Help Reduce Waste

... in order to better intervene, manage risk, ensure quality and set rates
History of Predictive Modeling

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Research began on health-based risk models</td>
<td>Health Insurance Plan of California (HIPC) implemented a homegrown risk adjustment model</td>
<td>1st Society of Actuaries study comparing several different risk models and risk adjusters.</td>
<td>Balanced Budget Act – mandated risk-adjusted payments for Medicare+Choice for year 2000 (Principal Inpatient Dx Model)</td>
</tr>
</tbody>
</table>
History of Predictive Modeling (cont.)

- 2002
 - 2nd Society of Actuaries study comparing several different risk models and risk adjusters. DCGs chosen best in class.

- 2004
 - CMS selects an ‘all encounter model’

- 2007
 - 3rd Society of Actuaries study comparing several different risk models and risk adjusters. DCGs chosen best in class. 12 models tested.
History of Predictive Modeling (cont.)

R squared
Explanes predictive value. A higher R squared equates to a better degree of predictability.

How it works
Predictive Modeling Basics

• Most models are designed to require 1 year’s worth of enrollment and medical and/or pharmacy data.

• Purpose Varies
 – Predictive Modeling in Pricing
 • Identify difference in cost between people and groups to price accordingly
 – Predictive Modeling in Care Management
 • Resource use and intensity is the focus
DCGs

- Thomson Reuters currently utilizes Diagnostic Cost Groups (DCGs)
 - DCGs are a population-based classification and risk adjustment methodology
 - Developed and licensed by Verisk Health Inc.
 - Selected by CMS for the Medicare Choice Program

<table>
<thead>
<tr>
<th>Population Group</th>
<th>Variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicare</td>
<td>All - encounter</td>
</tr>
<tr>
<td>Medicaid</td>
<td>All - encounter</td>
</tr>
<tr>
<td>Commercial</td>
<td>All – encounter</td>
</tr>
<tr>
<td></td>
<td>Rx Groups – Rx/Inpatient</td>
</tr>
<tr>
<td></td>
<td>Rx Groups – Rx Only</td>
</tr>
<tr>
<td></td>
<td>Etc.</td>
</tr>
</tbody>
</table>
The DCG models work by:

• Classifying raw administrative (medical and/or pharmacy claims as well as eligibility and aid category) data into coherent clinical groupings

• Applying clinically valid hierarchies and interactions to create an aggregated, empirically valid patient score at the individual beneficiary level

• Correlating the scores with the cost of the health burden carried by the beneficiary

• Aggregating individual scores by groups of interest creates group-level predictive results specific to many Medicare/Medicaid applications
Medical Episode Grouper (MEG)

What is an episode?

- An episode is all care for a course of treatment of a disease
 - Primary and secondary diagnosis codes grouped into one of 560 disease categories
 - Stratified by severity of illness
 - Disease categories and clinical criteria specified by physicians at Jefferson Medical College
- Includes inpatient, outpatient and drug claims
 - Not every claim is assigned an episode
- Also includes admissions
- Patients may have more than one episode at any given time
MEG provides clinically relevant grouping

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>History of minimal hypertension</th>
<th>History of moderate hypertension</th>
<th>History of severe hypertension</th>
<th>ICD-9-CM Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01</td>
<td>Hypertension, minimal</td>
<td>OR: Diastolic pressure ≥ 90 mmHg on three separate readings within one month AND diastolic pressure < 100 mmHg on three separate readings within one month OR: History of diastolic pressure ≥ 90 mmHg on three separate readings AND history of diastolic pressure < 100 mmHg on three separate readings OR: Systolic pressure ≥ 140 mmHg on three separate readings within one month AND systolic pressure < 160 mmHg on three separate readings within one month</td>
<td>OR: Diastolic pressure ≥ 100 mmHg on three separate readings within one month AND diastolic pressure < 110 mmHg on three separate readings within one month OR: History of diastolic pressure ≥ 100 mmHg on three separate readings AND history of diastolic pressure < 110 mmHg on three separate readings OR: Systolic pressure ≥ 160 mmHg on three separate readings within one month AND systolic pressure < 180 mmHg on three separate readings within one month</td>
<td>NO;</td>
<td>DX 4011, 4019;</td>
</tr>
<tr>
<td>1.02</td>
<td>Hypertension, moderate</td>
<td>OR: Diastolic pressure ≥ 110 mmHg on three separate readings within one month AND diastolic pressure < 120 mmHg on three separate readings within one month OR: History of diastolic pressure ≥ 110 mmHg on three separate readings AND history of diastolic pressure < 120 mmHg on three separate readings OR: Systolic pressure ≥ 180 mmHg on three separate readings within one month AND systolic pressure < 210 mmHg on three separate readings within one month</td>
<td></td>
<td></td>
<td>DX 40300, 40310, 40390;</td>
</tr>
<tr>
<td>1.03</td>
<td>Hypertension, very severe</td>
<td>Diastolic pressure ≥ 120 mmHg OR systolic pressure ≥ 210 mmHg</td>
<td></td>
<td></td>
<td>DX 4010;</td>
</tr>
<tr>
<td>2.01</td>
<td>Hypertensive retinopathy, Grade I or II of Keith and Wagener</td>
<td>Stage 1.02-2.01 AND A-V nicking [fundscopy report] OR copper wire* vessels [fundscopy report] OR narrowing of arterioles [fundscopy report] OR Grade I Keith and Wagener retinopathy [fundscopy report] OR Grade II Keith and Wagener retinopathy [fundscopy report]</td>
<td></td>
<td></td>
<td>DX 36211;</td>
</tr>
<tr>
<td>2.02</td>
<td>Hypertensive retinopathy, Grade III or IV of Keith and Wagener</td>
<td>Stage 1.02-2.02 AND retinal hemorrhage [fundscopy report] OR retinal exudates [fundscopy report] OR Grade III Keith and Wagener retinopathy [fundscopy report] OR Grade IV Keith and Wagener retinopathy [fundscopy report]</td>
<td></td>
<td></td>
<td>STAGE 1.01-2.02 + (DX 36281-36282);</td>
</tr>
</tbody>
</table>
MEG: Grouping Methodology

- **Classification** - Diagnosis codes from healthcare claims and other administrative data are grouped into one of the over 550 Disease Staging disease categories and severity stages.

- **Beginning and Ending Episodes** - Clean periods unique to each disease category are used to group each claim into an episode.

- **Inclusion Logic** - Less specific episode groups occurring in close proximity to specific episodes are combined with the specific episodes, e.g. “other gastrointestinal or abdominal symptoms" and "appendicitis".

- **Drug Data** - Mappings of National Drug Codes (NDCs) to episode groups enables pharmacy claims to be grouped to relevant episodes.

- **Lookback Procedure** - Lab and diagnostic imaging claims preceding an episode are examined to determine whether they should be combined with the episode.

The complete episode ranges in time between the lab test and the final office visit.
MEG—Putting it All Together

DRUG TRANSACTION FILE

<table>
<thead>
<tr>
<th>PATID</th>
<th>NDC</th>
<th>SERVDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>ISDN</td>
<td>95-01-15</td>
</tr>
<tr>
<td>01</td>
<td>INSUL</td>
<td>95-02-15</td>
</tr>
<tr>
<td>01</td>
<td>INSUL</td>
<td>95-04-15</td>
</tr>
<tr>
<td>01</td>
<td>AMOX</td>
<td>95-04-15</td>
</tr>
<tr>
<td>01</td>
<td>AMOX</td>
<td>95-11-15</td>
</tr>
<tr>
<td>01</td>
<td>GRHORM</td>
<td>95-11-15</td>
</tr>
</tbody>
</table>

LOOKUP TABLE

<table>
<thead>
<tr>
<th>NDC</th>
<th>EPGRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISDN</td>
<td>10</td>
</tr>
<tr>
<td>INSUL</td>
<td>359</td>
</tr>
<tr>
<td>INSUL</td>
<td>360</td>
</tr>
<tr>
<td>INSUL</td>
<td>361</td>
</tr>
<tr>
<td>AMOX</td>
<td>484</td>
</tr>
<tr>
<td>AMOX</td>
<td>86</td>
</tr>
</tbody>
</table>
Medical Episode Grouper (MEG)

What is the analytic value of using episodes?

• Attributes all costs to diseases
 – Particularly prescription drugs

• Finds a physician that is accountable for treatment
 – Managing Physician
 • Identifies the physician who guided treatment usually providing multiple E & M visits
 • Use to identify the decision-maker in a patient’s care
 – Primary Physician
 • Identifies the physician with the highest costs
 • Use to evaluate if specific episode costs

• Measures and compares the costs of treating disease
 – Which providers and plans are most efficient
 – Both price and resource consumption
MEG: Potential Drug Substitutions – ACEI vs. ARB

- ARB has no generic substitute and is more costly than therapeutically similar ACEI.
- Quintile 5 patients are more likely to receive an ARB.
MEG: Variation and Cost of Antithrombotic Treatment

- People prescribe/take antithrombotics for hypertension to lower risk of ischemic event – “it makes sense.”
- Aspirin/antiplatelet is recommended for secondary prevention of ischemic event.
- However:
 - Warfarin not recommended.
 - Antiplatelet therapy not recommended for primary prevention, as risk of hemorrhage is greater than risk reduction of ischemic event.

Cost of Antithrombotic Drugs for Primary Prevention

<table>
<thead>
<tr>
<th>Quintile</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quintile 1</td>
<td>$3,686</td>
</tr>
<tr>
<td>Quintile 5</td>
<td>$213,962</td>
</tr>
</tbody>
</table>

Episodes and Patient-Level Adjustment

• Diagnostic Cost Groups (DCGs)
 – Risk adjustment methodology used to predict current or future patient costs, e.g. relative risk score (RRS)
 – Unit of analysis – the patient
 – Based on all prior or current year claims to identify patient-level complexity/comorbidities

• Together, MEG and DCGs provide a complete picture of a patient
Disease Staging Framework

• Initially developed under contract to NCHSR with ongoing private development by Medstat/Jefferson teams

• Software converts a stream of claims into clinically homogeneous groups

• Takes over 15,000 ICD-9-CM codes to 560 disease categories

• Independent of setting or treatment

• Etiology assigned to each category

• Severity stratification based on robust clinical criteria
A Useful Approach to Predictive Modeling and Targeting: Risk Adjusted Episodes

What is Risk Adjusted Episodes?

• An improved method of benchmark adjustment in Decision Analyst that combines the disease and severity strength of MEG with the population-based risk adjustment power of the DCG grouper

• Basing risk adjustment on average episode costs ignores significant risk factors which physicians take into account when treating a patient.
 – Age and gender
 – Comorbidities

• Basing risk adjustment on a single illness burden score (for the patient) ignores vital information about diseases and severity levels.
 – Risk adjustment using illness burden accounts for the risk of a population across all conditions, but is not enough to determine expected costs for a specific condition.

• Combining episodes and illness-burden methodologies addresses the shortcomings of each.
The Problem

Michael
Progressive Angina
2005 Costs ~ $15,323

Diane
Progressive Angina
2005 Costs ~ $5,974

62 year old, Male
Comorbidities
• Renal failure
• Deep vein thrombosis
• Impaired fasting glucose
• Asthma

Relative Risk Score = 56.38

58 year old, Female
Comorbidities
• Hypertension, minimal

Relative Risk Score = 5.54

Patients at the same severity level within an episode can have significant cost variance...

...due to different comorbidity profiles.
Dimensions of Risk that Drive Episode Cost

To fairly compare physicians on cost of care, differences in complexity levels need to be considered.

Source: Based on ~ 100 Million Claims, 2003-2004
Risk Adjusted Episodes

- The method is intuitive and easy to explain to physicians / clinicians
- It does a better job at an individual physician-level of accounting for that physician’s mix of patients / severity
- It has potential for improvements in predictive power
Risk Adjusted Cost Profile for Cardiology Episodes

<table>
<thead>
<tr>
<th>Physicians</th>
<th># Episodes</th>
<th>Episode Cost Scale (avg=100)</th>
<th>Actual Costs Per Episode</th>
<th>Expected Costs Per Episode</th>
<th>Performance Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Before</td>
<td>After</td>
<td></td>
</tr>
<tr>
<td>Jones</td>
<td>77</td>
<td>159</td>
<td>$6,426</td>
<td>$5,075</td>
<td>1.27</td>
</tr>
<tr>
<td>Harris</td>
<td>75</td>
<td>115</td>
<td>$2,106</td>
<td>$3,018</td>
<td>0.70</td>
</tr>
<tr>
<td>Davis</td>
<td>72</td>
<td>159</td>
<td>$4,983</td>
<td>$5,690</td>
<td>0.88</td>
</tr>
<tr>
<td>Brown</td>
<td>62</td>
<td>80</td>
<td>$838</td>
<td>$1,537</td>
<td>0.55</td>
</tr>
<tr>
<td>Wilson</td>
<td>62</td>
<td>83</td>
<td>$1,001</td>
<td>$1,501</td>
<td>0.67</td>
</tr>
<tr>
<td>Smith</td>
<td>61</td>
<td>167</td>
<td>$5,667</td>
<td>$5,746</td>
<td>0.99</td>
</tr>
<tr>
<td>Gold</td>
<td>58</td>
<td>86</td>
<td>$816</td>
<td>$1,557</td>
<td>0.52</td>
</tr>
<tr>
<td>Murphy</td>
<td>57</td>
<td>158</td>
<td>$3,710</td>
<td>$5,646</td>
<td>0.66</td>
</tr>
<tr>
<td>Evans</td>
<td>53</td>
<td>110</td>
<td>$2,653</td>
<td>$2,990</td>
<td>0.89</td>
</tr>
<tr>
<td>Ford</td>
<td>53</td>
<td>91</td>
<td>$2,671</td>
<td>$1,818</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Source: Based on subset of Marketscan Commercial data, 2002-2004
Risk Adjusted Cost Profile for Dr. Ford

<table>
<thead>
<tr>
<th>Episode Group</th>
<th>Stage</th>
<th>Episodes</th>
<th>Actual Costs Per Episode</th>
<th>Expected Costs Per Episode Before</th>
<th>Expected Costs Per Episode After</th>
<th>Performance Ratio Before</th>
<th>Performance Ratio After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrhythmias</td>
<td>1.01</td>
<td>1</td>
<td>$226</td>
<td>$1,217</td>
<td>$1,295</td>
<td>0.19</td>
<td>0.17</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>3.01</td>
<td>1</td>
<td>$391</td>
<td>$6,474</td>
<td>$8,525</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>Angina Pectoris 1.01</td>
<td>2</td>
<td>2</td>
<td>$18,816</td>
<td>$4,632</td>
<td>$4,664</td>
<td>4.06</td>
<td>4.03</td>
</tr>
<tr>
<td>Angina Pectoris 1.02</td>
<td>1</td>
<td>1</td>
<td>$36,638</td>
<td>$7,583</td>
<td>$7,897</td>
<td>4.83</td>
<td>4.64</td>
</tr>
<tr>
<td>Angina Pectoris 2.04</td>
<td>1</td>
<td>1</td>
<td>$23,794</td>
<td>$22,033</td>
<td>$28,480</td>
<td>1.08</td>
<td>0.84</td>
</tr>
<tr>
<td>Essential Hypertension, Chronic Maint</td>
<td>1.01</td>
<td>45</td>
<td>$870</td>
<td>$1,057</td>
<td>$1,057</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>Other Cardiovascular Symptoms</td>
<td>1.01</td>
<td>2</td>
<td>$1,876</td>
<td>$1,128</td>
<td>$1,290</td>
<td>1.66</td>
<td>1.46</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>53</td>
<td>$2,671</td>
<td>$1,818</td>
<td>$1,994</td>
<td>1.47</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Source: Based on subset of Marketscan Commercial data, 2002-2004
Risk Adjusted Cost Profile for Dr. Ford (patient detail)

<table>
<thead>
<tr>
<th>Episode Group</th>
<th>Stage</th>
<th>Patient</th>
<th>Actual Costs Per Episode</th>
<th>Expected Costs Per Episode</th>
<th>DCG Relative Risk Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive Heart Failure</td>
<td>3.01</td>
<td>Jim</td>
<td>$391</td>
<td>$6,474</td>
<td>16.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.04</td>
</tr>
<tr>
<td>Angina Pectoris</td>
<td>2.04</td>
<td>Adam</td>
<td>$23,794</td>
<td>$22,033</td>
<td>4.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.36</td>
</tr>
<tr>
<td>Other Cardiovascular Symptoms</td>
<td>1.01</td>
<td>Sarah</td>
<td>$3,535</td>
<td>$1,128</td>
<td>2.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.55</td>
</tr>
<tr>
<td>Other Cardiovascular Symptoms</td>
<td>1.01</td>
<td>Dave</td>
<td>$218</td>
<td>$1,128</td>
<td>8.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.55</td>
</tr>
</tbody>
</table>

Using the 69 providers with at least 10 episodes as a sample, no provider’s performance ratio changed by more than 0.15.

Using all 149 providers as a sample, 71% of performance ratios changed by 0.05 or less.

In general, only modest changes are expected when using Risk Adjusted Episodes for dynamic benchmarks (slightly more variance for Marketscan benchmarks).

Source: Based on subset of Marketscan Commercial data, 2002-2004
Case Studies

Moving Medicaid Providers Toward Best Practices and Reduce Waste
Provider Profiling with Risk Adjusted Episodes

• Blue Cross Blue Shield Plan was charged with developing risk-adjusted provider profiles for both internal and external profiling goals.

• Thomson Reuters combined patient-level risk scores from the Diagnostic Cost Grouper (DCG) with the severity score from Thomson Reuter’s Medical Episode Grouper.

• Eliminates the potential of rewarding physicians who care for patients with few co-morbid diseases while penalizing physicians who care for patients with a significant illness burden.

• Results: BCBS used information during contract negotiations, and supplied providers with actionable goals and recommendations.
Provider Performance and Gaps in Care

• Thomson Healthcare and APS Health Systems are partnering to assist a State Medicaid agency in using data to create meaningful internal and external analyses to evaluate provider performance and create an action plan to address any gaps.

• Maintain healthcare utilization review system specific to disease/risk status – based on updated guidelines & evidence based medicine
 – Advantage Suite with MEG, DCGs, Patient Health Record
 – Physician Performance Assessment Module
PHYSICIAN PERFORMANCE ASSESSMENT: CORE METHODS & CAPABILITIES

- **Efficiency (Affordability) Measures**
 - Medical Episode Grouper (MEG)
 - Disease Staging Severity Model
 - DCG Risk-Adjusted

- **Effectiveness (Quality) Measures**
 - Nationally adopted evidence-based measures
 - Custom measures as appropriate

- **Analysis and Reporting**
 - Physician Identification
 - Physician Attribution
 - Other Methods and Analytics
 - Measure Reliability and Stability
 - Reporting and Distribution
A FRAMEWORK FOR PHYSICIAN PERFORMANCE MEASUREMENT

Effectiveness Assessment

- Quality Measures
 - Numerator
 - Denominator

Efficiency Assessment

- Denominator
 - Episode Grouper
 - Episode Severity
 - Patient Risk (comorbidities)
- Numerator
 - Utilization & Cost Measures

Reporting

- Physician Identification and Attribution
- Outlier Exclusion
- Volume Thresholds
- Composite Scores
Claims Administrative Rules
Sets of procedures and billing activities governing the administrative rules for payment

Peer Group Practice Norms
Comparisons among providers or patients that identify deviations from peer group normative behavior

Evidence-Based Medicine
The conscientious and judicious use of current best evidence from clinical and outcome research for the management of individual patients

Determination of Appropriateness
Predictive Modeling in Program Integrity

- There is no application that can “predict” future fraud and abuse
 - Providers and Beneficiaries cannot be prosecuted for future possibilities

- When are Program Integrity and Predictive Modeling linked?
 - By looking at past experience states can predict which types of provider services, which regions of the state, or other variables that predict more likely yields of fraud or abuse cases
 - This type of predictive modeling definition is currently being popularized in law enforcement for deployment of police to areas of the city that have a history of particular crimes at particular times.
 - Compiling several red flags or indicators of potential F&A and applying a score to a provider over the multiple indicators
 - Prepayment flags that scored providers in various levels of upcoding, unbundling, or improper billings only look at incoming claims and don’t look at the whole picture of paid claims across all databases
 - Prepayment Editing predicts inappropriate billings and denies the claims before payment
Questions & Discussion

KNOWLEDGE TO ACT.
Contact:

David Nelson
Director

Thomson Reuters
(734) 913-3432 Direct
(734) 913-3338 Fax

David.L.Nelson@ThomsonReuters.com