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How you locate fraud and abuse today —
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The analytics and data toolkit

« Multiple functional components in today’s fraud
and abuse toolkit:

* Predictive modeling

Business rules/rules based algorithms

Watch list identity matching

Social network analysis
Public records data
Contributory data (SIRIS)

Case management
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Healthcare Analytic Solution Challenges
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Claim scoring using predictive models: -

Predictive modeling provides a score for each claim or policy, allowing activity
to be concentrated on areas that have the highest probability of identifying
fraud and abuse
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Healthcare — the special case

 Medicaid, Medicare, Blues and Commercial Plans - different
business rules/different priorities —all strapped for resources

 Prompt Pay Rules vary by state but always require virtually
Immediate decision making

 Not the same as credit cards, not at all
« MLR and reform mean uncertainty for many years to come

* Fraud risk control requires an enterprise approach that includes
delivery, quality and compliance

e The claim workflow will be modified over time to allow for more
effective fraud and abuse control

———
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Algorithms

e Supervised vs. Unsupervised Learning

— Have a specific outcome in historic data

— Do not have an outcome “cluster” like together
* Decision Trees

— Accurate, conceptually “understandable”, non-linear, non-parametric,
robust with outliers, missing data, automatic interaction terms

* Neural Nets
— Work best with pre-transformed “smooth” data
— Difficult training time
— Black Box
 Regression
— Most established/widely used algorithm
— Works well, but doesn’t have some of the advantages of trees
— Works much better on linear data

————
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Building a model

Accurately identifies likely
actionable claims
Based on historical data patterns

Real-world data
Handles the realities

Tree-based Modeling Approach
Alleviates “black box” concerns
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What is “Score Plus More”

Sample Model Score: 985

1 985
2 985
3 985
4 985

———

@ LexisNexise



Predictive modeling provides adds a score plus mor_.

Sample Model Score: 985

Plus More

Criminal
Record

Significant :
Edits ;

Two Bankruptcy
Sanctions
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Provider models

 Models can help identify problem providers early that would not
have been identified by other methods

e Looking at thousands of attributes about a provider or a claim to
find a data pattern that makes a robust prediction

 Models use:
— diagnosis codes
— treatment codes
— provider types
— date stamps

 The models identify treatment patterns associated with diagnoses
that are characteristic of known problem providers and flags other
providers that exhibit similar treatment patterns

————
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Predictive Modeling — A Reform Mandate

e Scarce resources and increased enforcement require a “force
multiplier”

 Manual review can simply not keep pace with CMS audit and DOJ
compliance pressures

 FERA changes mean “we didn’t know” won't fly anymore

« Transparency and visibility are the keys to exposing increased
workflow efficiencies and hidden risk

————
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Medical Claims
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ClaimFocus — “Score Plus More”
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