

Predictive and Similarity Analytics for Healthcare

Paul Hake, MSPA

IBM Smarter Care Analytics

© 2012 IBM Corporation

Disease Progression & Cost of Care

PREDICTIVE MODELING

3

Problem Definition: Early Detection of Heart Failure (HF)

- Goal:
 - How to build a model for predicting HF onset x months before the HF diagnosis?
- Data: Longitudinal patient records
 - Structured data:
 - Demographics, Outpatient diagnoses, Problem List, Vitals, Medication, Labs
 - Unstructured text : encounter notes

What are the known signs and symptoms of HF?

Framingham Risk Criteria for Heart Failure			
Major Criteria	Extracted Criteria Code Names		
Paroxysmal nocturnal dyspnea or orthopnea	PNDyspnea (PND)		
Neck vein distention	JVDistention (JVD)		
Rales	Rales (RALE)		
Radiographic cardiomegaly	RCardiomegaly (RC)		
Acute pulmonary edema	APEdema (APED)		
S3 gallop	S3Gallop (S3G)		
Central venous pressure > 16 cm of H_2O	ICVPressure (ICV)		
Circulation time of 25 seconds	(not extracted)		
Hepatojugular reflux	HJReflux (HJR)		
Weight loss of 4.5 kg in 5 days, in response to Rx	WeightLoss (WTL)		
Minor Criteria			
Bilateral ankle edema	AnkleEdema (ANKED)		
Nocturnal cough	NightCough (NC)		
Dyspnea on ordinary exertion	DOExertion (DOE)		
Hepatomegaly	Hepatomegaly (HEP)		
Pleural effusion	PleuralEffusion (PLE)		
A decrease in vital capacity by 1/3 of max	(not extracted)		
Tachycardia (rate of $\geq 120/\text{min}$)	Tachycardia (TACH)		

 Framingham criteria for HF* are common signs and symptoms that are documented even at primary care visits

^{*} McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural history of congestive heart failure: the Framingham study. N Engl J Med. 1971;285(26):1441-6.

How predictive are Framingham criteria?

- The prevalence of Framingham criteria varied widely between cases (<1% 65%) and controls (<1% 28%)
- The most common Framingham criteria of HF were ankle edema and DOE, but these were also the most common findings in controls, albeit with ~half the prevalence.
 © 2012 IBM Corporation

Predictive Modeling Pipeline

^[1] Dijun Luo, Fie Wang, Jimeng Sun, Marianthi Markatou, Jianying Hu, Shahram Ebadollahi, SOR: ScalableOrthogonal Regression for Low-Redundancy Feature Selection and its Healthcare Applications. SDM'12

^[2] Jimeng Sun, Jianying Hu, Dijun Luo, Marianthi Markatou, Fei Wang, Shahram Edabollahi, Steven E. Steinhubl, Zahra Daar, Walter F. Stewart. Combining Knowledge and Data Driven Insights for Identifying Risk Factors using Electronic Health Records. AMIA'12 (to appear)

Method for combining knowledge- and data- driven risk factors¹

[1] Jimeng Sun, Jianying Hu, Dijun Luo, Marianthi Markatou, Fei Wang, Shahram Edabollahi, Steven E. Steinhubl, Zahra Daar, Walter F. Stewart. Combining Knowledge and Data Driven Insights for Identifying Risk Factors using Electronic Health Records. AMIA'12 (to appear)

Prediction Results of Knowledge-driven Features plus Data-driven

Features

- AUC significantly improves as complementary data driven risk factors are added into existing knowledge based risk factors.
- A significant AUC increase occurs when we add first 50 data driven features

Clinical Validation of Data-driven Feature Enhancement

Table 1: Top 10 data driven features among Cases and Controls

Feature type	Feature name	Relevancy to HF	
Diagnosis	DYSLIPIDEMIA	Yes	
Medication	Thiazides and Thiazide-Like Diuretics	Yes	
Medication	Antihypertensive Combinations	Yes	
Medication	Aminopenicillins	Yes	
Medication	Bone Density Regulators	Possible side effect, or maybe a surrogate for elderly women	
Medication	NATRIURETIC PEPTIDE	Yes	
Symptoms	Denial Rales	Yes	
Medication	Diuretic Combinations	Yes	
Symptoms	Denial S3Gallop	Yes	
Medication	Nonsteroidal Anti-inflammatory Agents (NSAIDs)	Yes, contribute to fluid retention due to renal effects	

- 9 out of 10 are considered relevant to HF, and one possibly relevant, which confirm the interpretability of the proposed method for expanding knowledge driven risk factors.
- The additional features are mostly from medications and symptoms which are complementary to the existing diagnosis (knowledgedriven) features

Evaluation Design for Predictive Modeling

- Diagnosis date: the day that patient x has been diagnosed with HF
- Index date: the day that we want to predict the risk of HF for a given patient x
- Prediction window: the time interval between diagnosis date and index date
- Observation window: a fixed time interval prior to index date
- Metric: Area under the ROC curve (AUC)

Feature-based Patient Representation

- Patients are modeled as longitudinal streams
- At any time T (indicated by red arrows) for a patient P, we can construct a feature vector to represent the characteristics of P at T.
- Remarks
 - Absolute time is patient specific. It is not meaningful to compare across patients based on the absolute time.
 - E.g. It does not make sense to compare two patients on their condition at 1/1/2011 in general.
 - Relative time is meaningful across patients.
 - E.g. We can compare patients with respect to multiple sequential events, such as a certain medication followed by certain lab results within a month.
 - Feature vectors are global. i.e., we can compare and build models on the feature vectors across patients.

Area under the ROC curve (AUC) measure on different prediction windows

- Setting: observation window=12months, classifiers={random forest, logistic regression},
 evaluation mechanism = 10-fold cross-validation
- Observation:
 - AUC slowly decreases as the prediction window increases

AUC measure on different observation windows

- Setting: prediction window= 180 days, classifiers= {random forest, logistic regression}, evaluation mechanism =10-fold cross-validation
- Observation:
 - AUC increases as the observation window increases. i.e., more data for a longer period of time will lead to better performance of the predictive model
 - Combined features performed the best at .85 AUC for observation window= 24 months

PATIENT SIMILARITY

16

Patient Similarity Analytics

Objective

Given an index patient, find clinically similar patients for decision support and Comparative Effectiveness

Highlights

- Analytics pipeline for similarity that allows flexible combination of information from heterogeneous data sources
- Data driven customization to fine tune similarity metric to specific investigation

Patient Similarity for Treatment Comparison

Analytics Pipeline for Patient Similarity

Baseline Similarity

Factors combined using expert defined weights

Customized Similarity

Learned context and end point specific distance metric tailored to a specific purpose (outcome, diagnosis, utilization etc.)

Published at: AMIA'10, ICPR'10, ICDM'10, SDM'11a, SDM'11b

Physician Outcome Model

Objective

Predict the likely outcome of a (patient, physician) pair based on population data and past outcomes

Highlights

- Patient and physician characterization using records of past practices and outcomes
- Prediction by analyzing how index patient relates to past success and failure cases of particular physician
- Provides individualized insight vs. population level averages

Physician Assessment and Selection

Population Based

Comprehensive Diabetes Care (CDC)

- Born HEDIS 1999
- Percentage of members 18-75 with diabetes (type 1 and 2) who had:
 - Hemoglobin A1c (HbA1c) testing
 - HbA1c poorly controlled (greater than 9%)
 - Retinal eye exam
 - LDL-C screening performed
 - LDL-C controlled (below 130 mg/dL)
 - LDL-C controlled (below 100 mg/dL)
 - Kidney disease (nephropathy) monitored

Assessment at Population Level

Individual Outcome Based

Physician Outcome Model Predict likely outcome based on patient characteristic, provider characteristics and care history Cinical Characteristics and care history ? ? patient

Personalized Matching

Problem Formulation

Data

- Diabetic patient's longitudinal data and their PCPs
- Segmented by patient into baseline condition assessment period and treatment evaluation period
- Used to train and validate models

 Reference date: one day after the first abnormal HbA1C lab test

HbA1C:

Normal	Well	Moderately	Poorly
	Controlled	Controlled	Controlled
	6.4	7	9

Samples

 Patients having at least one abnormal HbA1C test result (baseline)

Outcomes

 HbA1C range change between reference and evaluation date (1 year ± 2 months)

Positive outcome:

 range change closer to normal, or remain in "well controlled" range

↑ Negative outcome:

 range change further away from normal, or remain in moderately or sub-optimally controlled

Outcome Prediction Process <u>Total: 195, positive: 81, negative: 114; 80 physicians</u>

<u>Physician related features improves</u> <u>prediction for challenging patients</u> Identifying Differentiating Challenging **Physicians Patients** 20 Well managed Patients (Positive) **Optimally Performing** 60 Physicians for this Patient **patients** 100 120 **Sub-optimally Performing** Poorly managed Physicians for this Patient Patients (Negative) 140 160 **Experiments confirmed that choice of** 180 physician has statistically significant impact on challenging patients' likely 20 60 80 100 outcome physicians

Utilization Pattern Analysis through Patient Segmentation

Objectives

Continuously assess salient utilization patterns within patient population and how they relate to clinical characteristics; Identify patients with abnormal utilization

Highlights

- Identification of dominant utilization groups through patient segmentation
- Specialized predictive modeling methodology linking clinical characteristics to expected utilization
- Identification of unexpected cases via comparison between expected and actual utilization groups for each patient

Identify patient cohorts with similar utilizations

Unexpected Utilization Detection

Detected Unexpected Utilizations

73 year old male

Diagnoses:

.....

HCC080 (Congestive Heart Failure)

HCC166 (Major Symptoms, Abnormalities)

HCC091 (Hypertension)

HCC179 (Post-Surgical States/Aftercare/Elective)

HCC019 (Diabetes with No or Unspecified Complications)

Jianying Hu, Fei Wang, Jimeng Sun, Robert Sorrentino, Shahram Ebadollahi. *A Healthcare Utilization Analysis Framework for Hot Spotting and Contextual Anomaly Detection. AMIA* 2012 (to appear)

ADVANCED VISUALIZATION

29

Outflow Temporal Analysis

Outflow Temporal Analysis

Outflow's Visual Encoding

