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Clinical Vignettes
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Joe S.

e 69 y/o man with COPD & h/o acute
exacerbations
e Tend to occur annually with seasonal
triggers

* Also has DM, HTN which are relatively
well-controlled

* Doesn’t always get annual influenza
vaccine & sometimes forgets to fill his
meds
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Joe S.

So, it’s not surprising that he
will likely have another
exacerbation next spring

Joe had a COPD
exacerbation last

spring...
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Most case managers already know about
patients like Joe...

What about the nonobvious cases?
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Linda R.

e 76 y/o woman with h/o of well-
controlled HTN

e Family h/o CVD

* Recently seen for palpitations, but
otherwise asymptomatic
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Linda R.

Although Linda’s
palpitations are
asymptomatic
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Our model predicts that her

palpitations may be indicative of a
more severe cardiac dysrhythmia,
like atrial fibrillation
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And the likelihood

of a stroke is high




How to apply
Machine Learning
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Our Methodology

transform
into
tensors
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feature
extraction

apply algorithms
(ML and traditional)

model

Actionable
Insight

Intervention
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Dealing with healthcare data
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« Some members may be sicker than others

« Service utilization can be quite different
across regions and plan types
« HMO vs. PPO
* Medicare Plans vs. Commercial Plans
» California vs. Texas

e =E[EBEEREEEREEEE - Member data can be found in multiple

S BERERE sources e.g. claims, electronic health
e records, lab results, etc.
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Current State'Of_the_Art Expert curated — time consuming

& expensive to develop
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Accordion Health Approach
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Member-level
time-series models
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Group-level
machine learning
models

e We ensemble all these millions

of multi-aspect models to

* |dentify members who have
missing conditions

* Predict members’ responses
to outreach efforts

» Predict members’ utilization
for the next 3, 6, 12 months

 And more...
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Recommender Systems
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Suspected Condition Categaries

Current Conditions Expected Conditions

» [CC15] Myasthenia Gravis/Myoneural Disorders and Guillain- * [CCIB3] Kidney Transplant Status
Barre Syndrome/Inflammatory and Toxic Neuropathy

+ [CC3] Central Nervous System Infections, Except Wiral Meningitis

+ [CC56] Rheumatold Arthritis and Specified Autoimmune
Disarders

+ [CC187] Chronic Kidney Disease, Stage 5

+ [CC1B4] End Stage Renal Disease

%y Surfaced Diagnoses |detalls)

[CC183] Kidney Transplant Status

Crerview Evidence from Patient History Relevant Charts
* Dy Code: 94420 » [Rx] Antimetabolite Immunosuppressant (825.82) 1. Claim ID: - |
+ Dy Description: KIDNEY « [CC]184: End Stage Renal Disease (T102.37) s Date:
TRAMSPLANT STATUS + [CC]1B7: Chronlc Kidney Disease, Stage 5 (5787) e Provider NPl
+ Likelihood of Do 0.4 + [Dx] 9-5856: END STAGE REMAL DISEASE (Begin 2. Claim IDx BN H
# Likellhcod of Dx In Chart: 2005) (26.07) s Date:
0.2 # [Pr] 83735 Assay of magnesium (T1.75) ¢ Provider WP|:
+ [Pr] BO048: Metabolic panel total ca (8.33) 3. Claim ID: S—
» [Pr] 84100 Assay of phosphorus (5.84) ¢ Date: —
+ [Pr] 87186: Microbe susceptible mic (5.77) ¢ Provider NPL:
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Suspected Condition Categories

Current Conditions Expected Conditions
« 9 Lung, Brain, and Other Severe Cancers, Including Pediatric Acute +« 142 Specified Heart Arrhythmias
Lymphoid Leukemia o Expected Risk Gain: 0.2
« B8: Major Depressive and Bipolar Disorders # 156: Pulmeonary Embolism and Deep Veln Thrombosis

o Expected Risk Gain: 1019

¥ Suspected Diagnoses (detalls)

156: Pulmonary Embolism and Deep Vein Thrombosis

* Missing Code: 9-45340 * Evidence found in Medical/Rx Claims

*» Likelihood: 0B o [dx] Administrative/social admission

* Risk gain 16.98 o [dx] Phlebitis; thrombophlebitis and thremboembolism
* Claim date: 20150327 o [dx] Other aftercare

* Provider ID: 1861466153 e [rx] Witamin K Antagonist

142: Specified Heart Arrhythmias

* Missing Code: 9-42731 + Evidence found in Medical/Rx Claims
* Likelihcod: 0.06 o [dx] Other aftercare
* Risk gain 3.1 e [rx] Witamin K Antagonist

*» Claim date: 200150107
« Provider ID: 1871572818
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Thank You!

Stephanie Kreml, MD
stephanie@accordionhealth.com
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