The Dawn of Precision Delivery:

Integrating Analytics in Routine Patient Care

Ravi B. Parikh, MD, MPP

Resident in Internal Medicine, Brigham and Women's Hospital Clinical Fellow in Medicine, Harvard Medical School rparikh87@gmail.com | @ravi_b_parikh

BRIGHAM AND WOMEN'S HOSPITAL

Disclosures

I have no financial conflicts of interest to report

Senior Clinical Advisor

Coalition to Transform Advanced Care (C-TAC)

More Disclosures

What I am not:

Statistician or Data Scientist Entrepreneur Innovation Officer Finance Officer

> What I am: A Clinician

Outline

What is precision delivery?

Current use cases

Barriers to adoption

What could integrated analytics look like?

"Doctors have always recognized that every patient is unique, and doctors have always tried to tailor their treatments as best they can to individuals."

"...that's the promise of precision medicine, delivering the right treatments, at the right time, every time to the right person."

- President Obama, January 30th, 2015

Harvard Business Review

ANALYTICS

Making Predictive Analytics a Routine Part of Patient Care

Ravi B. Parikh, Ziad Obermeyer, and David Westfall Bates

INNOVATIONS IN HEALTH CARE DELIVERY

JAMA Integrating Predictive Analytics Into High-Value Care The Dawn of Precision Delivery

"...using an individual's electronic health data to predict risk and personalize care to substantially improve value"

Use Cases

Problem

Output is just another number

You might want to lay off the analytics for a while.

Problem

Output is just another number

Solutions

Focus on low-value decisions Flexible, iterative outputs Prediction → Prescription

Antibiotic TheraDoc Assistant

Variable	Effect of Antibiotic Assistant
Antibiotic costs per patient	\$122.66 → \$51.90
Daily dose of antibiotic	↓ 22%
Appropriate preop antibiotics	40% → 99%
Antibiotic-associated ADEs	↓ 30%

Ann Intern Med 1996

Inadequate access to all necessary inputs

Problem

Risk Prediction Models for Hospital Readmission A Systematic Review

Devan Kansagara, MD, MCR
Honora Englander, MD
Amanda Salanitro, MD, MS, MSPH
David Kagen, MD
Cecelia Theobald, MD
Michele Freeman, MPH
Sunil Kripalani, MD, MSc

Context Predicting hospital readmission risk is of great interest to identify which patients would benefit most from care transition interventions, as well as to risk-adjust readmission rates for the purposes of hospital comparison.

Objective To summarize validated readmission risk prediction models, describe their performance, and assess suitability for clinical or administrative use.

Data Sources and Study Selection The databases of MEDLINE, CINAHL, and the Cochrane Library were searched from inception through March 2011, the EMBASE database was searched through August 2011, and hand searches were performed of the retrieved reference lists. Dual review was conducted to identify studies published in the English language of prediction models tested with medical patients in both deri-

- Systematic review of readmission risk prediction models in MEDLINE, CINAHL, and Cochrane Library Databases
- 30 studies of 26 unique models included
- In models tested in large US populations, **c-statistic range**: 0.55-0.65

JAMA 2011

Inadequate access to all necessary inputs

Integrated data warehouses

Solutions

Problem

Unique data sources

VHA Corporate Data Warehouse

- Repository for patientlevel data aggregated since 2006
- Accessed 3,000-4,000 times monthly by over 1,200 clinicians
- Used to calculate risk scores for hospitalization & death

Type of Record	# of Records	
Outpatient encounters	1,967,728,159	
Inpatient admits	10,510,613	
Clinical orders	3,816,367,144	
Lab tests	6,621,446,020	
Pharmacy fills	1,918,648,827	
Radiology procedures	181,331,522	
Vital signs	2,739,094,630	
Text notes	2,570,709,839	
Hoalth Affairs 2014		

Problem

Analytics takes us away from the patient

Problem

Analytics takes us away from the patient

Solution

Integrating – not forcing – analytics into provider workflow

The implementation of clinician designed, human-centered electronic medical record viewer in the intensive care unit: A pilot step-wedge cluster randomized trial *

Brian W. Pickering^{a, c,} A. W. W. Dong^c, Adil Ahmed^c, Jyothsna Giri^c, Oguz Kilickaya^c, Ashish Gupta^d, Ognjen Gajic^{b, c}, Vitaly Herasevich^{a, c}

- Decreased pre-rounding time (9 vs 12 minutes, p=0.03)
- No impact on perceptions of ICU rounds
- Trend towards lower inhospital mortality (6.5% vs 9.1%, p=0.07)

Int J Med Inform 2015

Non-medical social data

Dashboard with biometric data from wearable & smartphone to generate an overall activity profile Accurate real-time mortality prediction to trigger an end-oflife conversation

EMR suggestion to double diuretic dose if high risk of heart failure exacerbation

Automated check point before prescribing antibiotic when infection risk is low

Take Away Points

- Current uses of analytics in clinical practice fit into five general categories
- Future integration depends on
 - \odot Identifying low-value decision points
 - Prescriptive, not just predictive, analytics
 - \odot Comprehensive and unique data sources
 - \odot Fitting analytics into existing provider workflows
 - Real-time iterative outputs

Special Thanks

David W. Bates, MD Meetali Kakad, MD, MPH Ziad Obermeyer, MD, MPhil Amol S. Navathe, MD, PhD

