

Reducing Readmissions: Harnessing the Power of Predictive Analytics

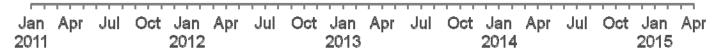
Jean Wright MD MBA
VP, Chief Innovation Officer &
Interim Analytics Officer

One

Carolinas HealthCare System Journey to Reduce Avoidable Readmissions

Readmission O/E

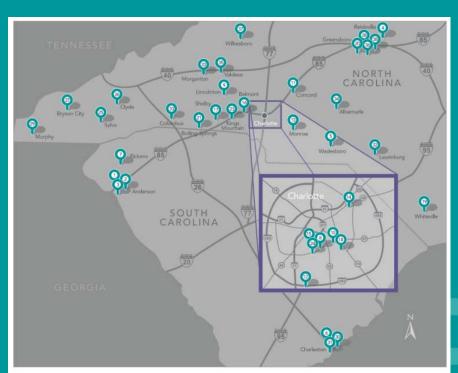
FAVORABLE



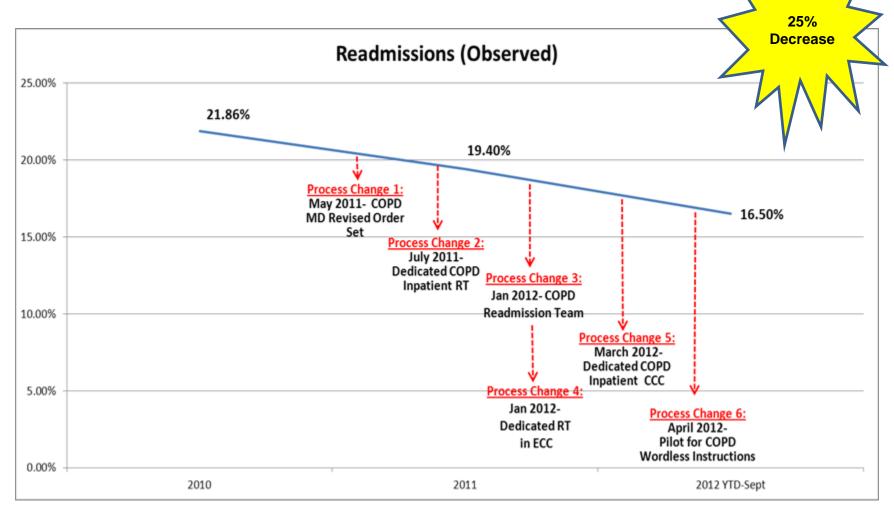
*Updated 7/14/2015

Carolinas HealthCare System is one of the leading healthcare organizations in the Southeastern United States and one of the largest public not-for-profit systems in the nation

- •60,000 Team Members
- •7,400 Licensed Beds
- 900 Care Locations
- •10 Million Patient Encounters
- •HEN / LEAPT Contractor
- Dixon Advanced Analytics Group

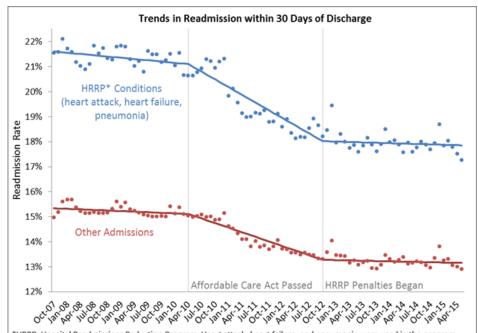


COPD Readmissions Trend



Nationally, 3 years of penalties, 3 years of pain

- FY 2016, 2,620 facilities are being penalized.
- The highest penalty for a single facility is over \$3.6M.
- 49 hospitals are being penalized at least \$1M in FY 2015.
- 38 hospitals are receiving the maximum 3% penalty



*HRRP: Hospital Readmissions Reduction Program. Heart attack, heart failure, and pneumonia were used in the program beginning in October 2013. Chronic obstructive pulmonary disease and hip and knee replacement were added in October 2015 and are not included in this graph.

Readmissions will cut Medicare payments to some Charlotte hospitals

Recommend 15 people recommend this. Sign Up to see what your friends

By Karen Garloch and Jordan Rau Kaiser Health News

Posted: Sunday, Oct. 05, 2014

Some Charlotte-area hospitals will receive reduced payments from Medicare next year, the third year of a federal program that penalizes hospitals for having too many patients readmitted for additional treatment within 30 days of their last hospital stay.

Since 2012, the federal Medicare program for seniors has penalized hospitals that have higher-than-expected readmission rates among patients treated for three medical

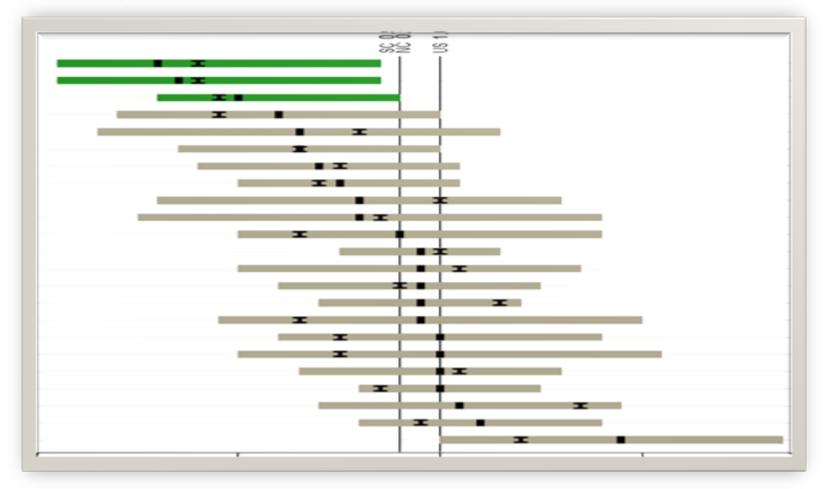
MORE INFORMATION

FINES FOR CHARLOTTE-AREA HOSPITALS

The following figures compare fiscal year 2014, which ended Sept. 30, to fiscal year 2015, which started Oct. 1.

Hospital	FY 2014	FY 2015
CMC-Pineville	0	0
Novant Health Presbyterian Medical Center	o.18 percent	0.30 percent
Novant Health Huntersville	0.08	0.10

Hospital Wide Readmissions Standardized Readmission Ratio



Do the Math

Base Operating DRG Payment Amount:

[[case mix index \times ((labor share \times wage index) + (nonlabor share \times COLA))] + new technology payments, if applicable] \times total Medicare cases [[1.3656 \times ((3,804.40 \times 1.0537) + (1,661.69 \times 1))] + 0] \times 5,433 = 41,852,953

To estimate a hospital's total readmission penalty, the Medicare case-mix index can be used in place of the DRG weights for each case

Readmissions Payment Adjustment Amount:

(base operating DRG amount for all admissions × readmissions adjustment factor) – base operating DRG amount for all admissions (41,852,953 × .9765) – 41,852,953 = (983,544)

readmission penalties are appropriate for healthcare, why not for other groups?

Driving Forces for Predictive Analytics in Healthcare

"Skyrocketing costs have rendered the current U.S. healthcare system 'unsustainable,' market forces are calling for a performancebased system, analytics are crucial to this paradigm shift from 'volume' to 'value,' and the transformation is inevitable."

Healthcare: the quiet reform by Peter

Horner

Analytics Magazine, Jan/Feb 2012

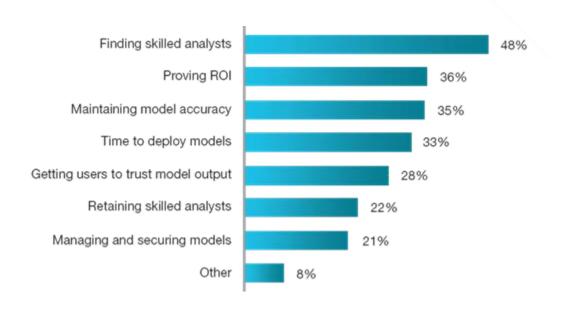
-1	BI/Analytics
2	Infrastructure and Data Center
3	Industry-Specific Applications
4	Cloud
5	Mobile
6	ERP
7	Networking, Voice and Data Communications
8	Innovation and Growth
9	Application Development
10	Integration
11	Compliance
12	Customer Relationship Management

Source: Gartner March 2014

Analyst(s): Zafar Chaudry, M.D. | Steve High

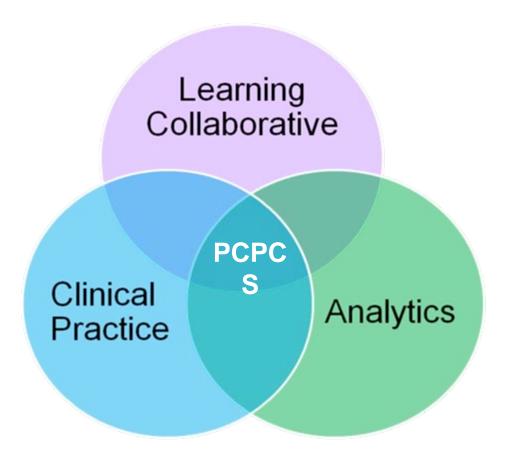
Challenges in Deploying Predictive Analytics

"Despite the buzz, the percentage of organizations that have implemented predictive analytics has remained surprisingly flat."



Wayne Eckerson, Principal Consultant Eckerson Group

Patient-Centered, Point of Care Clinical Decision Support



Project Vision

"We will analyze health and consumer data for insights into individuals' clinical risks and through the CHS Learning Collaborative...

...enable the best intervention and treatment decisions at the point-of-care...

...that optimize quality and cost-effective health services."

Analytically-driven, personalized care delivers value

Leverage our information infrastructure

Profile

Analytics

Applications

Interventions

Build highly predictive model



Within & out of hospital:

- Improve care quality
- Increase coordination
- Target resources on high risk patients

Addressing The Readmissions Challenge

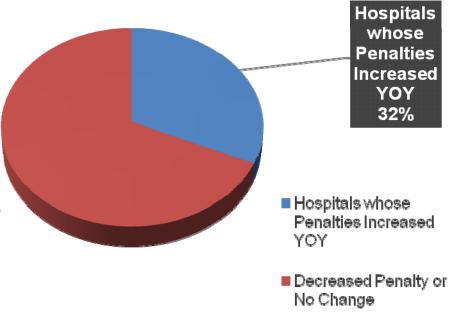
Project Goal: Our Problem

CMS Readmissions Penalties from FY13 to FY14

Identify patients at risk of readmitting before they leave the hospital and enable care providers to intervene

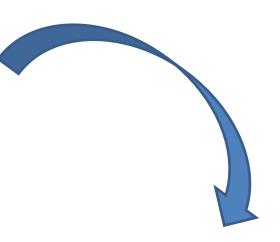
Project Goal: Your Problem

This goal is important to CHS, but it is important to every other hospital that faces penalties related to preventable readmissions



Source: Kaiser Health News analysis of data from the Centers for Medicare & Medicaid Services.

2 Years of Discharges



9 Hospitals

100,000 discharges

Analytics: Risk Models Attributes

- Risk models predict a patient's individual risk for
 - 30-day, unplanned readmission
 - Defined using CMS methodology
- Used 2 years of historical data from 9 Metro hospitals to build the model.
- The primary data source is the EMR (EDW)
 - Pulling over 70 predictive fields hourly, from the first hour admission, through the last hour of the stay
 - Continuously updated as the patient's condition changes.

The risk score changes throughout the stay

Admission on Monday

Diagnosis: Stroke

High Risk 20% Complication on Tuesday

Aspiration Pneumonia

Very High Risk 50%

Key Predictors of Readmission Risk

Age

Race Code

Insurance

Hospital Name

Service Provided

Admission Type

Transfer Type

Demographics

Psychosocial

Clinical Nutrition Consult

Living Situation

Need Transportation

Assistance

Physical Therapy Consult

Primary Diagnosis

Any Malignancy

Cerebrovascular Disease

Charlson Comorbidity Score

Chronic Pulmonary Disease

>9 Meds and >9 Problems

End Stage Renal Disease

Cancer Cohort

Myocardial Infarction

Number of diagnoses in the problem list

Number of orders

Pulmonary Disorder

Solid Tumor without Metastasis

Utilization

Co-morbidities

Days since last discharge (w/in 6 months)

Number of Inpatient visits in the last 6 months

Number of ED visits in the last 6 months

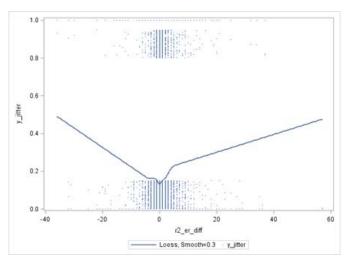
Number of Transfers

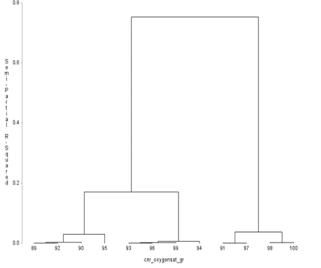
Discharged to home in the last 30 days

Continued...

Building the model

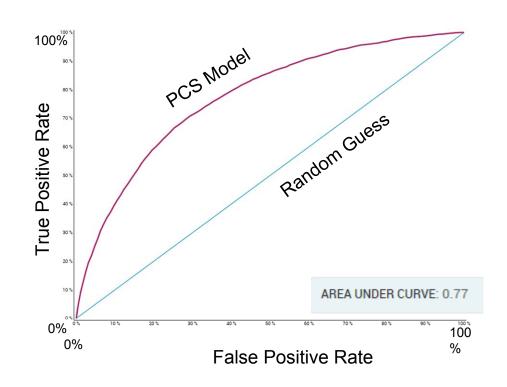
- Variables were gleaned from the literature and from clinicians
- Variables were analyzed for their impact either
 - as a continuous variable,
 - or a categorical variable
- The model was then tested in a variety of ways to assure is functionality
 - Build versus test cohorts
 - Bootstrap methods



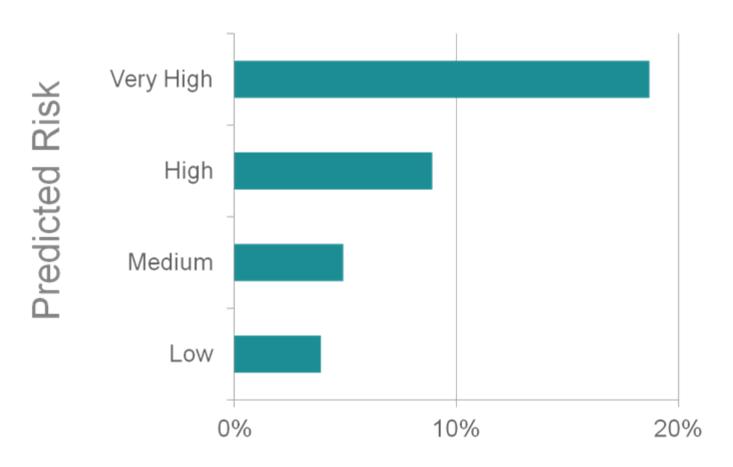


Analytics: Risk Model Accuracy

- Model Accuracy: C-stat = 0.77
- PCS Readmission model is better than any other predictive models in published literature
- C-stat is the area under the red curve. Accuracy increases as the curve moves towards the upper left corner away from the orange line, which represents a random guess (e.g., coin flip).



Validation of Readmission Risk Model



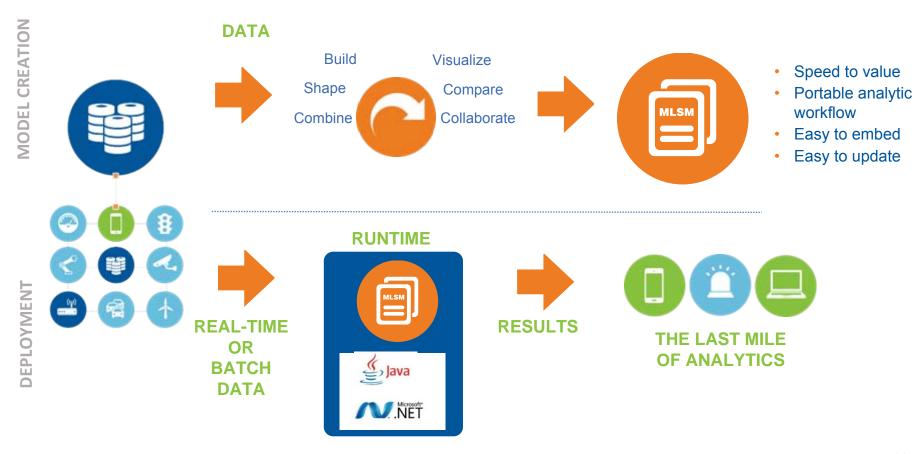
Actual Readmission Rate

Industry Interventions

- Case managers can target high risk patients and apply standard care plans (interventions)
- Create ability to measure and track the effectiveness of the intervention (continuous feedback cycle)

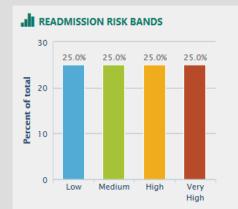
INTERVENTION TYPE	INTERVENTION DESCRIPTION	EFFICACY
Hospital Based	Dietary Consult	15%
	Smoking Cessation	15%
	Diabetic Teaching	15%
	Pharmacy Consult	15%
	Palliative Care	30%
Telehealth	Telehealth	60%
SNF	Skilled Nursing Facility	
Acute Inpatient Rehab	Acute Rehab	
LTC Hospital	Long Term Acute Care Facility	
Hospice- Facility	Hospice Facility	40%
Home Care	Home Care- Skilled Need	25%
	Home Visit RN Med Mgt/SW	50%
	Home Infusion	
	Home Equipment	
	Home Oxygen	
	Telemonitoring	14-80%

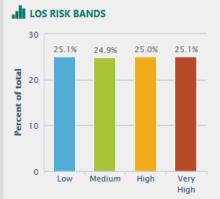
Patent-Pending MLSM Provides Value in Model Creation & Deployment



Patient Centric Solution







Copyright© 2015 Predixion Software. All rights reserved.

180585 items Show Admitted ✔ Print Export

						Risk	Band		
	Unit	Patient ID	Account	Patient Name	Roo	Readmission	LOS	Intervention Modifie	Intervention
].	PX Unit-D-07	10500		Patient PX-10	000	Low	High		
].	PX Unit-B-06	11000		Patient PX-11	000	Very High	High		
	PX Unit-B-06	11500		Patient PX-11	000	Medium	Medium		
	PX Unit-D-06	12000		Patient PX-12	000	Low	High		
	PX Unit-D-06	12500		Patient PX-12	000	Medium	High		
	PX Unit-B-06	13000		Patient PX-13	000	High	High		
	PX Unit-A-02	13500		Patient PX-13	000	Low	High	Thomas Wells	Oct 30, 201
	PX Unit-D-06	14000		Patient PX-14	000	Low	Very High		
	PX Unit-D-06	14500		Patient PX-14	000	Low	High		
	PX Unit-B-06	15000		Patient PX-15	000	Medium	High		
	PX Unit-A-02	15500		Patient PX-15	000	High	High		
	PX Unit-B-06	16000		Patient PX-16	000	Low	Medium		
	PX Unit-G-06	16500		Patient PX-16	000	Very High	Low		
	PX Unit-G-05	17000		Patient PX-17	000	Medium	Low		
	PX Unit-D-06	17500		Patient PX-17	000	Low	Medium		
).	PX Unit-B-06	18000		Patient PX-18	000	Very High	Medium		
).	PX Unit-G-06	18500		Patient PX-18	000	High	Very High		
	PX Unit-A-01	19000		Patient PX-19	000	High	Low		
	PX Unit-E-01	19500		Patient PX-19	000	Medium	Low		
		20000		Patient PX-20	000	High	Very High		



How do my patients look compared to others?

Copyright© 2015 Predixion Software.

All rights reserved

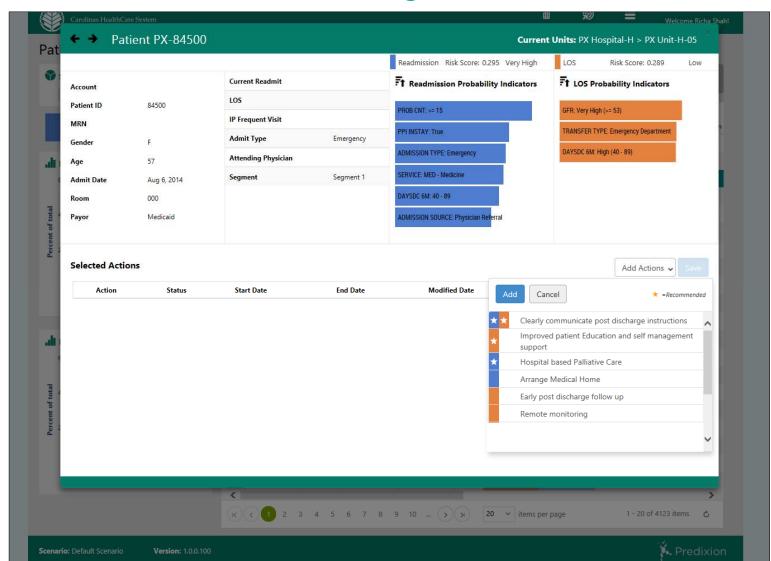
		Risk	Band
Patient Name	Roo	Readmission	LOS
Patient PX-10	000	Low	High
Patient PX-11	000	Very High	High
Patient PX-11	000	Medium	Medium
Patient PX-12	000	Low	High
Patient PX-12	000	Medium	High
Patient PX-13	000	High	High
Patient PX-13	000	Low	High
Patient PX-14	000	Low	Very High
Patient PX-14	000	Low	High
Patient PX-15	000	Medium	High
D	0.00		

Where are they located?

Copyright© 2015 Predixion Software.

All rights reserved

What is driving their risk?



Individual Patient View

What is driving the risk?



Intervention lifecycle and tracking

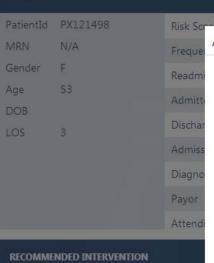
PATIENT INTERVENTIONS

Active Scenario: Default Scenario

Welcome Raghu Ramachandran! June 23 2013

LYMPHOMA T

What am I going to do about it?



Home	Cardiac Rehab
Hospital Based	Dietary Consult
Telehealth	Telehealth

OK

Patient Risk Assessment

Then

Done After EMR and Patient Review

Care managers need to review the patient's chart and examine the patient prior to assessing risk

Care managers assign risk based on a a few simple criteria that group patients into two buckets: low risk and high risk

Case Manager Variation

Care manager ability to find and assess risk factors varies

Done at Admission

Care managers only have capacity to assess patient risk at admission

Done Prior to Seeing Patient

Allows care managers to work more effectively by prioritizing their workflow and more efficiently through automating the risk assessment.

Risk Assessed from Predictive Model

Patient risk for readmission is predicted, automatically, from over 40 key variables pulled from Cerner

Automation Decreases Variation

Patient risk is automatically calculated for the care managers

Updated Hourly

A patient's condition and likelihood for readmission can change throughout a hospital stay; our tool captures these changes hourly as clinical data change

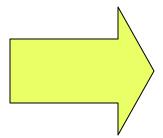
Care Interventions

Then

Now

Difficult to Hardwire

Care managers required to recognize a certain patient type and remember what interventions are to be assigned to the patient

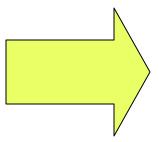


Recommendations Assigned Automatically

Patients automatically assigned interventions based on their personal characteristics

Difficult to Measure Interventions

Current care management tools do not allow for evaluation of intervention efficacy; limits our ability to leverage our System



Measure Efficacy Interventions

Capture of interventions and data around outcomes will allow us to measure the efficacy of interventions and determine patients who optimally benefit

Additional Benefits

- Potential to improved the productivity of nurses and case managers
 - Instead of basing rounds on room number, time of discharge or other information, a reliable method of working the list of patients can be developed.
 - Case Managers can now be deployed based upon the complexity of the patients and their likelihood of readmission
- Ability to better predict work loads across floors and units
- Risk stratification for Transition of Care calls
- Communication of risk to post acute care providers

Triage of Risk for Transitional Care

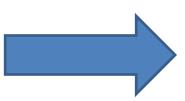
VERY HIGH RISK

HIGH RISK

Telehealth Call Center Transitional Care Call

VERY HIGH RISK

HIGH RISK



Transitional Care Clinic

Time to Deploy Models

- Our 3 year experience in building and deploying models now shortens the adoption curve for every organization that follow in our path.
- A recent deployment in rural North Carolina, took only 5 days to get the model validated, the Case Managers trained, and the model into their hands.
- By Friday, cases were being managed differently.

Potential to deploy visualization across devices

Portable Web Applications

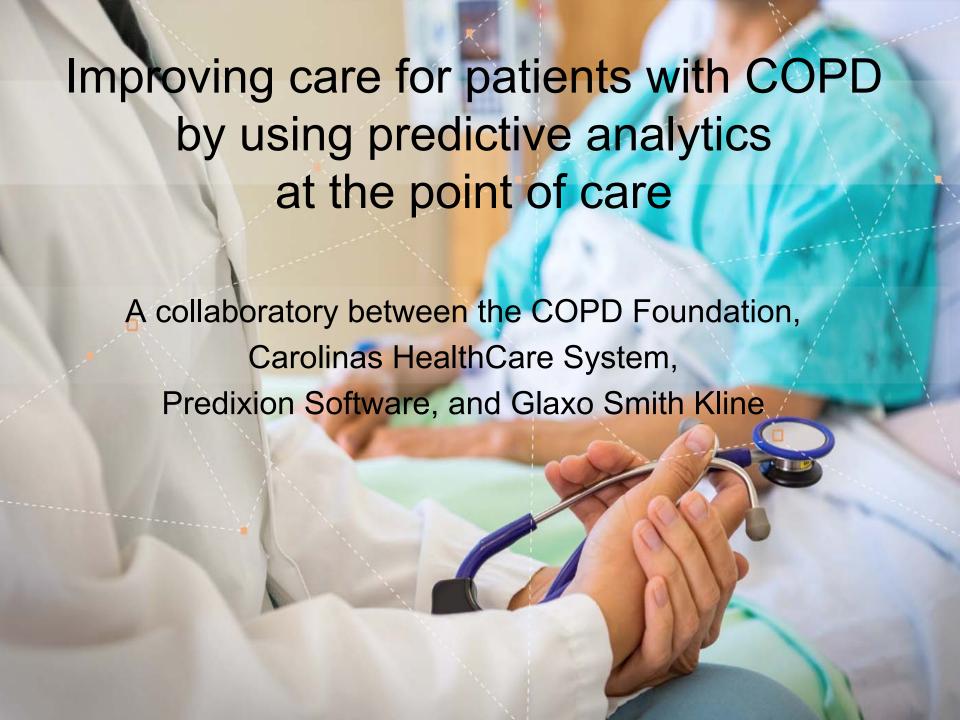
Embedded CRM

Interactive Mobile Apps

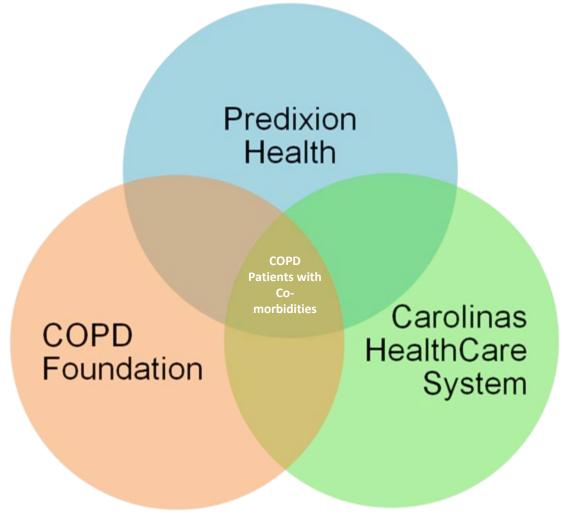
Embedded IoT

Dashboard Integration

Solution Accelerator



Patient-Centered, Point of Care COPD Learning Collaboratory



COPD360SOCIAL

WHAT IS COPD

LEARN MORE

TAKE ACTION

RESEARCH

Academics

Board members

Clinical Leaders

Industry

Key Predictors of Readmission Risk

Age

Race Code

Insurance

Hospital Name

Service Provided

Admission Type

Demographics

Primary Diagnosis

Any Malignancy

Cerebrovascular Disease Charlson Comorbidity Score

Chronic Pulmonary Disease

>9 Meds and >9 Problems

End Stage Renal Disease

Transf

Built from our experience with Readmission 1.0 & 2.0

Clinical Nutrition

Consult

Living Situation

Need

Transportation

Assistance

Physical Therapy

Consult

Psychosocial

Utilization

Co-morbidities

Days since last discharge (w/in 6 months)

Number of Inpatient visits in the last 6 months

Number of ED visits in the last 6 months

Number of Transfers

Discharged to home in the last 30 days

Continued...

Key Predictors of Readmission Risk

Labs/Vitals/Meds

Recorded/Home Meds

Meds in the last 24 Hrs

Albumin Level

Ammonia level

Arterial Lactate

Pland Transfusion

O2 saturation

Proton Pump Inhibitor

Orientation

Oxygen Flow Rate

Oxygen Improved Status

Ovugan Thorany Typa

Built from the literature and experts in COPD care

Gastrointestinal Normal

Glomerular Filtration Rate

Feeding Tube

Hemoglobin

HGB A1C

Inability to Verbalize Needs

Musculoskeletal Normal

Neurological Normal

Nutrition Braden Score

Scooting

Sit to Stand

Sit to Supine

Skin Description

Systolic BP

Toilet Use Mobility

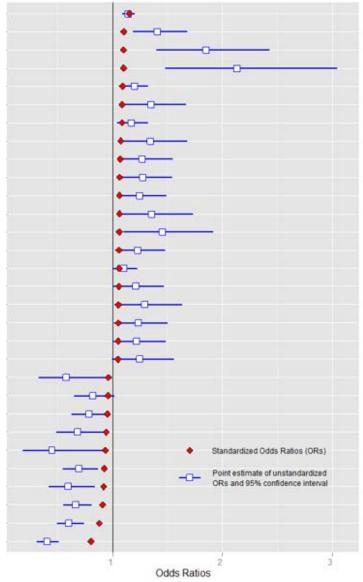
Tracheal Post Treatment

Venous Lactate

COPD Readmission Risk Model

Built on nearly 8000 discharges with a CMS defined COPD or Asthma Diagnosis

Actionable insights by comparing odds ratios

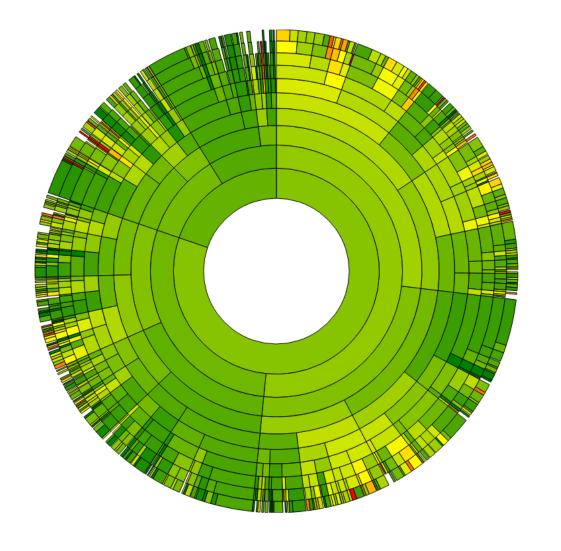


CHF Combination of Conditions

Severity of Top 20 combinations (accounts for 75% of COPD+CHF patients)

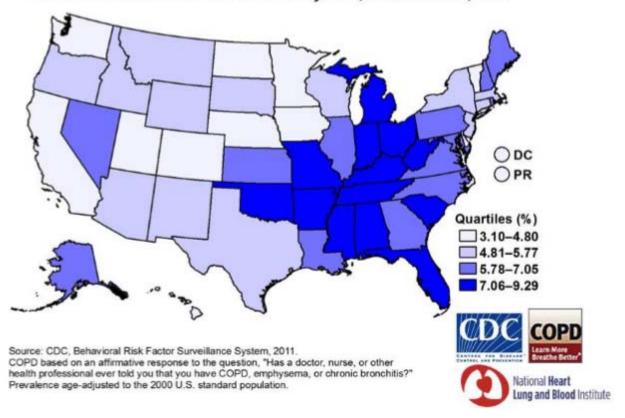
Comorbidity combination		Proportion	Readmission	Label
10010001	55	1.9%	12.7%	CHF + OP + Anxiety
10001001	97	3.4%	12.4%	CHF + OA + Anxiety
11000000	228	7.9%	14.0%	CHF+ HTNDis
10000000	372	12.9%	15.9%	CHF only
10001000	81	2.8%	16.0%	CHF + OA
10000001	221	7.6%	18.1%	CHF + Anxiety
10000100	138	4.8%	18.1%	CHF + DM
10001100	38	1.3%	18.4%	CHF + OA + DM
11100100	38	1.3%	18.4%	CHF + HTNDis + Anemia + DM
11001101	69	2.4%	18.8%	CHF + HTNDis + OA +DM +Anxiety
11001100	57	2.0%	19.3%	CHF + HTNDis + OA +DM
11000001	85	2.9%	20.0%	CHF + HTNDis + Anxiety
10011001	41	1.4%	22.0%	CHF + OP + OA + Anxiety
10000101	125	4.3%	24.8%	CHF + DM + Anxiety
10001101	71	2.5%	26.8%	CHF + OA + DM + Anxiety
11000100	160	5.5%	27.5%	CHF + HTNDis + DM
11001001	74	2.6%	28.4%	CHF + HTNDis + OA + Anxiety
11100101	37	1.3%	29.7%	CHF + HTNDis + Anemia + DM +Anxiety
11001000	63	2.2%	33.3%	CHF + HTNDis + OA
11000101	108	3.7%	35.2%	CHF + HTNDis + DM + Anxiety

Visualize the Relationships of COPD with Comorbidities



COPD prevalence varies across the country

Age-Standardized Prevalence of
Chronic Obstructive Pulmonary Disease (COPD)
Among Adults Aged ≥18 Years—
Behavioral Risk Factor Surveillance System, United States, 2011



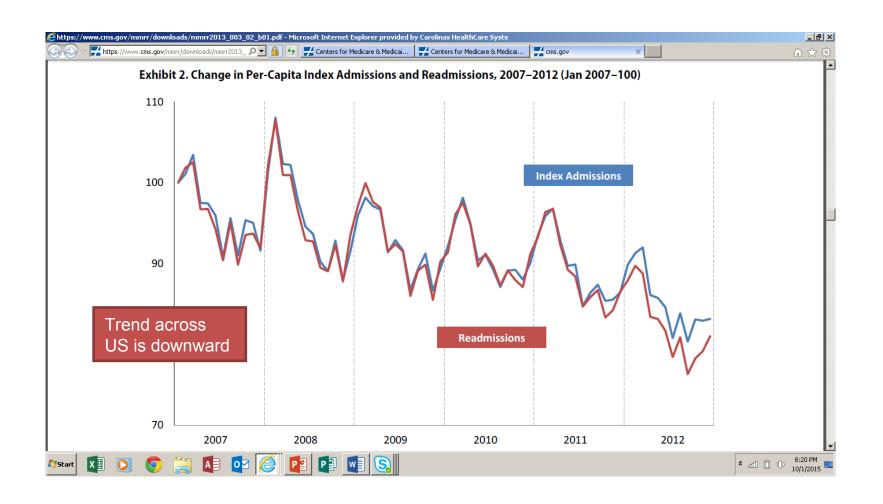
Insights from our recent Design Session for Predictive Personalized Medicine Interface

Involved end-users for designing the interface

- Case Managers
- Hospitalists
- Primary Care Physicians
- Pulmonologists
- Respiratory Therapists
- Pulm Rehab Team

 http://sendvid.com/5kq3a1l5?secret=653da4fa-450d-4af9af36-b924614d39e8

Trend across the country is down

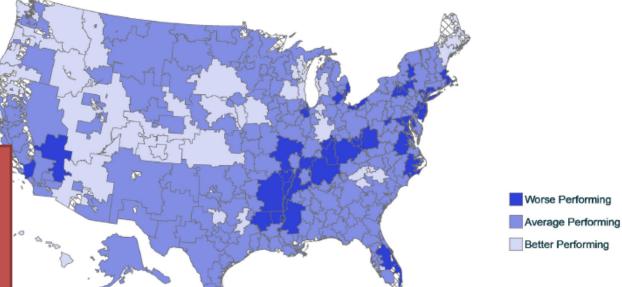


HOSPITAL-WIDE READMISSION

GEOGRAPHIC VARIATION

Does overall performance on the hospital-wide unplanned readmission measure differ by geographic location?

FIGURE 1.C.4. Classification of hospital referral regions (HRRs) by RSRR for hospital-wide readmission, July 2012 - June 2013.



Trend across US is downward and Charlotte has outperformed rest of country (and better than this same graph previous year).

What does improving your O/E mean?

- Using just a percentage doesn't reflect the case mix of your organization.
 - The Cardiothoracic program was moved from one hospital to another. The Case Mix radically changed at both.
- Using a percentage doesn't reflect the changes in care, and how they impact subsequent admissions and readmissions
 - As you get better at readmissions, you get better at Admissions, and the patient population changes in your hospital
- As your O/E improves, you demonstrate that your organization is pulling away from similar hospitals with similar patients.

Improving Observed to Expected Ratios

Hypothethical Hospital 10,000 discharges a year Number of readmissions **expected** 1800 readmissions a year Number of readmissions **observed** 1800 readmissions a year

If the number of readmissions = the number expected: 0/E = 1

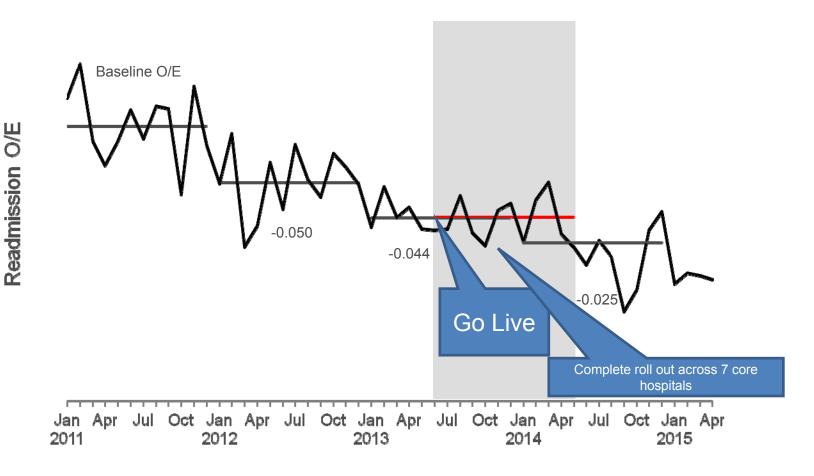
If the number of readmissions is reduced 10%,

Number of readmissions expected is 1800 readmissions a year Number of readmissions observed is 1680 readmissions a year

Then the O/E ration goes to 1680/1800 or 0.93

As O/E is less than 1.0, there is a continued improvement in performance.

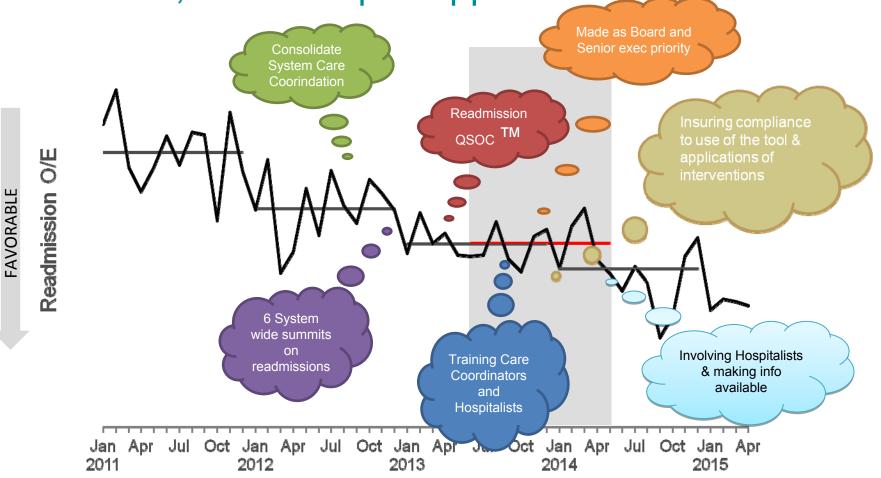
Carolinas HealthCare System Readmissions Journey Implementation of Predixion™



FAVORABLE

*Updated 7/14/2015

Carolinas HealthCare System Readmissions Journey Multifacted, multi-campus approach to improvements



*Updated 7/14/2015

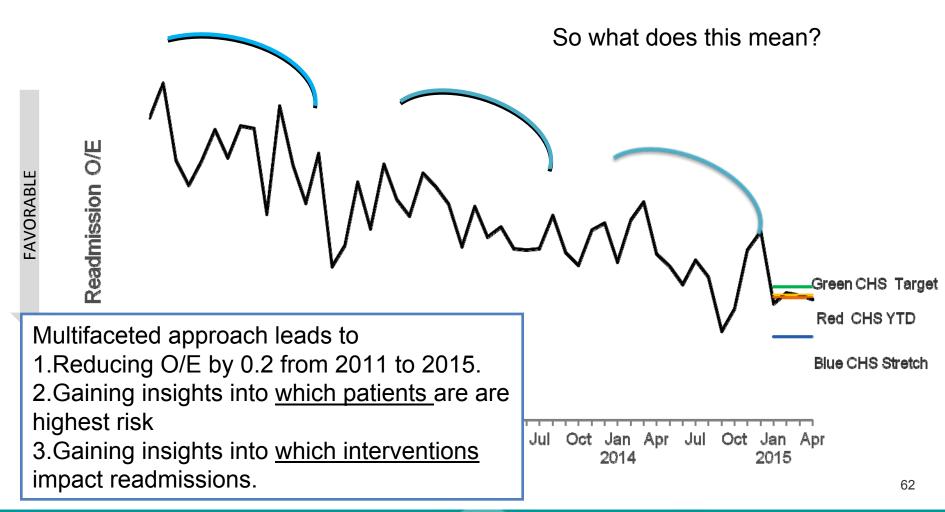
Results

- In the metro city Charlotte market, CHS recently saw an even further drop in readmissions by requiring the use of a standard order set amongst hospitalists caring for patients with COPD.
- Coupling standardized management with interventions aimed at the highest risk populations dropped the readmission rate in half again.
- So what does this tell us? A sharper focus built upon predictive analytics, coupled with intentional strategies aimed at the highest risk patients, can measurably decrease the readmission rate.

CHS Multi-year Journey on Readmissions

- Consolidated Case Management Across Metro Hospitals
- System wide Summits held on the topic of readmissions
- A CHS QSOC ™ was formed and meets quarterly
- A System Wide Executive Steering Committee was formed.
- Although CMS was focusing penalties on only 3 DRG at the inception of the program, CHS chose to internally measure it's performance against all diagnoses, and all causes.
- Co-development of model of readmissions based upon 2 years of historical data from CHS (> 300K discharges).
- Training of Case Management in use of Predixion Tool
- Development of accountability of Case Managers for using tool and applying appropriate interventions.
- Spread of use of tool beyond just Case Management
- Importance of readmissions reflected in its outcome linked to Executive Dashboard.
- You must have an accurate focus on the impactable patient, and apply the meaningful interventions.

Carolinas HealthCare System Readmissions Journey Rolling Waves of Improvement



Conclusion

- Carolinas HealthCare System (CHS) has been on a multi-year journey to meaningfully decrease unplanned 30 day readmissions.
- Since adopting predictive analytics as part of their comprehensive strategy in summer of 2013, CHS has managed over 300,000 patient discharges in the hands of 200 case managers.
- As part of a comprehensive strategy, CHS has seen year over year improvement in decreasing the readmission O/E, and has increased insight into which patients should receive transition of care services.
- It's all about change management

