Identification of Potential Care Management Savings Using Chronic and Acute Impact Indices

Ogi Asparouhov, Ph.D.
Senior Scientist, MEDai, Inc., Orlando, FL

Diane Lee
Executive Vice-President, MEDai, Inc., Orlando, FL

Copyright 2006, MEDai, Inc. All rights reserved. This document and all information and ideas relating to MEDai, Inc. contained within are the property of MEDai, are confidential, and constitute a trade secret of MEDai. Except as otherwise contemplated in the Request for Proposal, neither this document nor any part nor any information related to MEDai, Inc. contained herein may be copied, or otherwise reproduced in any form or disclosed or furnished to others without the prior written consent of the Company.

Patent pending for Acute and Chronic Impact Indices
AGENDA

- Problem /Solution /Methodology
- Health Cost Components
- Evidence Based Guideline Gaps
- ROI Methods
- Chronic Impact Index
- Acute Impact Index
Problem

- Problem
 - Identifying members for Care Management
- Create solution for Care Management that
 - Identifies Impactable Members
 - Easy to Rank/prioritize members
 - Forecast Resources separately
 - Provides followup actions
 - Integrates Members information
 - Integrates into CM workflow
 - Results in ROI
Solution

• High-risk Identification
 • Only Step 1
 • Catastrophic Members often not impactable

• Forecasting Inpatient Stays, ER visits, Rx$
 • Individualized action plans per member

• Forecasting Acute Care Cost
 • Identifies members with potential for high acute-cost

• Forecasting Savings
 • Identifies members with the greatest opportunity for chronic savings
 • Highest Impactability & ROI

• Implementing Forecast via Impact Index
 • Acute & Chronic Index
 • Easily Ranks Members

• Implement into Care Management tool
 • detailed Member Profiles & data mining integrated
Study Methodology - Overview

- **Acute Index**
 - Create Model to forecast acute-cost
- **Chronic Index**
 - Create Model to forecast Savings based on Yr2 Chronic Cost – Yr1 Chronic Cost
 - Evaluates members following guidelines vs those not
 - Applies weights to gaps & diseases in order to forecast savings opportunity
 - Forecasted Savings based on member’s
 - Disease
 - Severity
 - Compliance to evidence based guidelines
HEALTH COST COMPONENTS
Health Cost Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute $</td>
<td>Nonrepeatable $ - 20%</td>
<td></td>
</tr>
<tr>
<td>Chronic $</td>
<td>Repeatable $ - 80%</td>
<td></td>
</tr>
<tr>
<td>Misc Preventive$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• For 70% of members, the difference between Yr1 & Yr2 chronic cost is < $500
• 15% of members, hospitalized during Yr1 also Yr2;
• 27% of members with ER Yr1 also Yr2;
• 30% of members with IP/ER visits during Yr1 also Yr2
Health Cost Components

• Acute $
 • Inpatient Care
 • facility charges
 • professional services related to facility care
 • Emergency Room Services
 • Facility Based Outpatient Care
 • ambulance
 • ambulatory surgery
 • observation and treatment room charges
 • costly radiology and nuclear medicine
 • CT and MRIs
Health Cost Components

• Misc Preventive $
 • Non-routine preventive services
 • Immunizations - long immunity periods
 • Hepatitis vaccine / Tetanus booster
 • Sports insurance / Physicals / Drug testing
 • Antigen testing
 • Detecting hereditary cancer
 • Colonoscopy

• Chronic $
 • All $ besides acute and above preventive
Diseases and Guidelines
Diseases

Diseases In Current Chronic Impact Index

Diabetes
CAD
CHF
Hyperlipidemia
CVA/TIA
Asthma
COPD
Depression

Potential Diseases for future Chronic Impact Index

Preventative
Osteoporosis
Schizophrenia
HIV/AIDS
Rheumatoid Arthritis
Migraine
Multiple Sclerosis
Chronic Renal Failure
High Risk Pregnancy
Diabetes Guidelines

- Diabetes with eye exam
- Diabetes with HGBA1C testing
- Diabetes with microalbuminuria testing
- Diabetes with ACE inhibitor
- Diabetes with LDL testing
- Diabetes w/hypertension used appropriate Rx
- Diabetes missing multiple guidelines
CHF Guidelines

- CHF w/ hypertension & using appropriate Rx
- CHF with hypertension and received ECG
- CHF and received ACE, ARB or beta blockers
- CHF on digoxin and received a digoxin level
- Inpatient for CHF and received ECG
- CHF and received appropriate medications
- CHF with hypertension and received ACE/ARB
- CHF with diuretics and received a chemistry panel
- CHF with atrial Fib on coumadin
CVA/TIA Guidelines

• CVA with atrial fib on Coumadin
• CVA on coumadin or clot inhibitor
• CVA and received lipid lab testing
• CVA w/ hypertension & using appropriate Rx
• CVA on Coumadin and received a protime test
GAPS - Statistics

<table>
<thead>
<tr>
<th>Disease</th>
<th>Count</th>
<th>%</th>
<th>Y1$</th>
<th>Y2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHF</td>
<td>4,498</td>
<td>0.5</td>
<td>9.45</td>
<td>6.54</td>
</tr>
<tr>
<td>CVA</td>
<td>3,625</td>
<td>0.4</td>
<td>8.00</td>
<td>4.89</td>
</tr>
<tr>
<td>CAD</td>
<td>19,334</td>
<td>2</td>
<td>5.82</td>
<td>4.05</td>
</tr>
<tr>
<td>COPD</td>
<td>13,225</td>
<td>2</td>
<td>4.79</td>
<td>3.76</td>
</tr>
<tr>
<td>Diabetes</td>
<td>41,111</td>
<td>5</td>
<td>3.38</td>
<td>3.15</td>
</tr>
<tr>
<td>Depression</td>
<td>27,544</td>
<td>3</td>
<td>2.89</td>
<td>2.54</td>
</tr>
<tr>
<td>Asthma</td>
<td>28,777</td>
<td>3</td>
<td>2.58</td>
<td>2.25</td>
</tr>
<tr>
<td>HyperLipidemia</td>
<td>126,846</td>
<td>14</td>
<td>2.45</td>
<td>2.29</td>
</tr>
<tr>
<td>Total Diseases</td>
<td>183,128</td>
<td>20</td>
<td>2.49</td>
<td>2.28</td>
</tr>
<tr>
<td>Gaps=0 compliant</td>
<td>63,933</td>
<td>7</td>
<td>2.26</td>
<td>2.13</td>
</tr>
<tr>
<td>Gaps>0 noncompliant</td>
<td>119,234</td>
<td>13</td>
<td>2.61</td>
<td>2.35</td>
</tr>
<tr>
<td>Total</td>
<td>892,577</td>
<td>100%</td>
<td>$2,282</td>
<td>$2,616</td>
</tr>
</tbody>
</table>
Disease Management
ROI Methodologies
Calculation of Cost Savings - ROI

- Choosing Disease Management programs based on ROI
- Two Calculation Approaches
 - Direct Approach
 Total cost for disease-specific member
 - Indirect Approach
 Utilization measures like admits, ER visits, procedures
ROI Methods

• Pretest–posttest design
 • before & after DM implementation
 • most common method
 • no control group for outcome comparisons
 • several sources of bias
 • competing extraneous confounding factors
 • difficult to conclude difference due to program intervention

• Randomized Control Trial
 • ideal for overcoming above issues
 • not practical
 • DM already underway
 • time and effort
 • control group ethical/legal considerations
ROI Methods

• Comparison Study vs Control Group
 • reliable
 • control & study group may be reasonably similar, but not identical/randomized-selection as in randomized control

• Propensity Score
 • Study/managed group vs control/non-managed group
 • with differences on their covariates
 • leads to biased estimates of cost savings
 • Propensity Score - the conditional probability of being managed given the covariates
 • Used to balance covariates in the two groups & reduce bias
 • To create this balancing PS uses:
 matching, stratification, regression adjustment or combination
ROI Methods

Predictive Model Adjustment – MEDai’s approach

• Instead of comparing 2 groups
• Build predictive model that accounts for differences between them
• Control group data used to develop model that calculates expected-costs for study group
• Predictive model avoids differences between both groups.
• Predictive model blind to differences because
 • We build expected costs model using the control group and apply it on the study group

Savings for study group = Actual$ - Expected$
Predictive Model
Approach –
Chronic Impact Index
Predictive Model – Chronic Impact Index

- **Problem:**
 - 8 diseases with 42 gaps
 - decision support system that identifies compliance to guidelines using
 - Medical/ Rx claims/ lab results
 - Create model to calculate
 - member-level savings for any combination of gaps and diseases.
 - **Savings based on:**
 - gap disease(s)
 - gaps’ count
 - severity of the member’s health status
 - demographics (sex, age)
Predictive Model – Chronic Impact Index

- **Dependent Variable – Chronic Savings**

- **-1**
 - Does not have one of the chronic diseases/conditions
 - Indicates NA

- **0$**
 - No savings opportunity
 - Has disease but is following all recommended guidelines

- **>0$**
 - Has savings opportunities
 - Patients with one of the chronic diseases
 - Not following guidelines
 - Patients with catastrophic disease or outlier-cost are weighted down
• No strict separation of members into study vs control
 • Diabetic Member
 • Compliant with guidelines 3 thru 7
 • part of the control group
 • Noncompliant with guidelines 1&2
 • part of the study group for calculation of the cost savings for guidelines 1&2
• Members participated in different DM programs. Therefore we have to reduce the bias at the individual level, not only at group level
Predictive Model – Chronic Impact Index

• To create generalizable model across 8 diseases:
 • Requires many disease/gap combinations
 • Large number of members with gaps and without gaps

• Working Hypothesis:
 • The 8 diseases/gaps have different influences on cost components according to forecast period
 • Short Forecast Period (1-2 yrs)
 Gaps main influence are on chronic cost
 • Longer forecast (4+ yrs)
 Gaps lead to more severe diseases / much higher cost - acute cost
Chronic Impact Index – The Model

Overall Study Group Savings =
 • Actual$ - Expected$
 • Future Actual Chronic$
 • is not only the result of guideline compliance
 • Other factors
 • therefore can’t use Chronic$ of non-compliant members but instead must smooth this cost to avoid uncertainty/bias thru modeling
 • Model should use
 • expected Cost if member 100% compliant
 • gap diseases/gaps/Chronic$/demographics if pt noncompliant

Individual Savings =
 • Expected$(non-compliant) - Expected$(compliant)
Chronic Impact Index – Data

• Data
 • 2 years claims data
 • 671,513 members at least one disease
 • Compliant Members - 210,472
 • Non compliant - 461,041
 Randomly Split into two datasets A&B
 • Many cost savings studies use only a few hundred - few thousands members (max <50k)

• Training Set
 • Compliant Member Dataset
 • Noncompliant dataset A

• Validation Set
 • Noncompliant dataset B
Chronic Impact Index – Modeling Steps

• **Step 1**
 - Use Compliant Member dataset to develop model to calculate Compliant-Expected-Chronic$
 - non-linear model many clusters
 - interactions/transformations of the predictors
 - mini-models for more than 18 different body systems

• **Step 2**
 - Apply Step 1 model on Noncompliant members Data Set A to calculate their Compliant-Expected-Chronic$
 as if they had no gaps
Chronic Impact Index – Modeling Steps

• **Step 3**
 - Use NonCompliant Dataset A to develop model to calculate NonCompliant-Expected-Chronic$
 - Basically adjust Compliant-Expected-Chronic$ for the non-compliant members using predictors that describe gaps/diseases/severity

• **Step 4:**
 - Apply Step 3 model on NonCompliant Dataset B Validation Set

• **Individual Savings =**

 Non-CompliantExpectedChronic$ - CompliantExpectedChronic$
Chronic Impact Index – Modeling Steps

• Step 5: Adjustment based on
 • Catastrophic disease presence
 • Severity according to year 1 chronic cost

• Parameters
 • Catastrophic & chronic year 1 \(\geq \$25k \)
 • Catastrophic & chronic year 1 $5-$25k
 • No catastrophic but chronic year 1 \(\geq \$50k \)
 • No catastrophic but chronic year 1 $35-50k
Chronic Impact Index – Formulate the Index

- **Create Easy to use Index**
 - Convert $ Savings to percentile ranking
 - Percentile Ranges:

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Does not have one of the 8 diseases Indicates NA</td>
</tr>
<tr>
<td>10</td>
<td>No savings opportunity</td>
</tr>
<tr>
<td>70-100</td>
<td>Has savings opportunities</td>
</tr>
</tbody>
</table>

- Patients with one of the chronic diseases
- Not following guidelines
- Range typically around 70-100 but can be 66-100 or 93-100 etc. depending on your plan’s percentage of noncompliant patients.
Results – from Chronic Impact Model
Results

- **Validation set**
 - **Truncation - $50k**
 - **Forecasting Year2 Chronic $**

<table>
<thead>
<tr>
<th>Model</th>
<th>Corr</th>
<th>R2</th>
<th>Sn(10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic1$</td>
<td>.611</td>
<td>.301</td>
<td>50.16%</td>
</tr>
<tr>
<td>CompliantChronic$</td>
<td>.643</td>
<td>.407</td>
<td>53.34%</td>
</tr>
<tr>
<td>Non-CompliantChronic$</td>
<td>.644</td>
<td>.414</td>
<td>53.76%</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Gaps</th>
<th>Count</th>
<th>Chr1$</th>
<th>Chronic Savings$</th>
<th>Guidelines</th>
<th>Diseases</th>
<th>Claims#</th>
<th>Body System</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>114102</td>
<td>1851</td>
<td>214</td>
<td>1.58</td>
<td>1.08</td>
<td>15.50</td>
<td>5.04</td>
</tr>
<tr>
<td>2</td>
<td>84243</td>
<td>1977</td>
<td>270</td>
<td>1.45</td>
<td>1.19</td>
<td>16.17</td>
<td>4.99</td>
</tr>
<tr>
<td>3</td>
<td>63171</td>
<td>2076</td>
<td>282</td>
<td>1.83</td>
<td>1.34</td>
<td>17.38</td>
<td>4.91</td>
</tr>
<tr>
<td>4</td>
<td>33626</td>
<td>2745</td>
<td>374</td>
<td>2.57</td>
<td>1.61</td>
<td>20.70</td>
<td>5.50</td>
</tr>
<tr>
<td>5</td>
<td>26962</td>
<td>2664</td>
<td>429</td>
<td>1.88</td>
<td>1.64</td>
<td>19.46</td>
<td>5.18</td>
</tr>
<tr>
<td>6</td>
<td>11865</td>
<td>3201</td>
<td>426</td>
<td>2.69</td>
<td>2.12</td>
<td>24.79</td>
<td>6.06</td>
</tr>
<tr>
<td>7</td>
<td>7315</td>
<td>3352</td>
<td>435</td>
<td>2.81</td>
<td>2.41</td>
<td>27.92</td>
<td>6.32</td>
</tr>
<tr>
<td>8</td>
<td>3856</td>
<td>4003</td>
<td>438</td>
<td>3.26</td>
<td>2.67</td>
<td>32.89</td>
<td>6.85</td>
</tr>
<tr>
<td>9</td>
<td>2158</td>
<td>4399</td>
<td>441</td>
<td>3.93</td>
<td>3.07</td>
<td>39.45</td>
<td>7.40</td>
</tr>
<tr>
<td>10</td>
<td>3438</td>
<td>4621</td>
<td>464</td>
<td>3.53</td>
<td>3.35</td>
<td>46.48</td>
<td>7.72</td>
</tr>
<tr>
<td>Total</td>
<td>350,736</td>
<td>2213</td>
<td>289</td>
<td>1.83</td>
<td>1.36</td>
<td>18.02</td>
<td>5.18</td>
</tr>
</tbody>
</table>
Chronic Impact Index:

- Higher potential savings when you can close the gap on patients with numerous noncompliant guidelines.
- Weights vary among diseases & guidelines.
- Catastrophic conditions show less savings potential

![Chronic Impact Index Graph]

- **NonCatastrophic Conditions**
- **Catastrophic Conditions**
Results

Potential savings generally increases with noncompliance

\%

\text{Gaps} = 100 \times \frac{\text{Gaps}}{\text{Gaps} + \text{Guidelines}}
More opportunity for savings with less severe chronic patients
Results

Gaps Count - 93,094 Diabetic Members with Chronic1$ <= $10,000

Savings increase with noncompliance until Rx uncontrolled
Results

Diabetes Gaps

Chronic Savings $ vs. Percentile of Chronic1$ (by 5%)

- Diabetes With Microalbuminuria Testing
- Diabetes With HGBA1C Testing
- Diabetes With Eye Exam

Results

Asthma gaps

Asthma and received primary treatment medications
Asthma and received inhaled steroid
Asthma and received PFT's
Chronic Impact Index - Summary

• Identifies members producing highest level of future savings by adherence to guidelines
• Members Ranked using Chronic Impact Index
• Implement via Care Management application
 • Integrated Member Profiles
 • Diagnosis / RX / Lab History
 • Risk Driver Profile
 • Guideline Compliance Profile
• Data mining capability
• Employer Reporting
• Physician Profiles
Acute Impact Index
Acute Impact Index

- Ranks individuals by opportunity to avoid high cost acute care
- Reflects IP and ER component of overall prediction
- Score of 97 or greater identifies patients with greatest potential for controlling cost

Calculation

- Each Member receives Forecasted ER Visits / Inpatient LOS
- Normalized to Dollars
- Creating a forecasted Acute Care Cost
- Cost Ranked Ascending
- Then Transformed to Percentile 1-100

- Acute Index used for care management ranking
 - 0–79.99 – Members in the 0-95% of forecasted acute events
 - 80-100 – Members in the top 5% of forecasted acute events
Models used for creating Acute Index

- Models for predicting
 - Inpatient LOS (Yr2)
 - ER Visits (Yr2)
- Models built on
 - 2 yrs medical & Rx claims
 - From repository of 14 million lives
- Independent Variables
 - Yr1 - Diagnoses/Comorbidities/Drugs/Visits…
- Non-linear models
 - interactions/transformations of the predictors
 - mini-models for more than 18 different body systems
- Statistical procedures used
 - decision trees /nonlinear regressions/nearest neighbors
 - spline estimators
New Prediction – Acute Cost

- Care Management reduction of IP and ER visits create substantial cost reduction

- Potential savings are typical for IP/ER events

- We decided to predict simultaneously both of them, creating a model for Acute Cost. Such an approach has its pros and cons, however it is innovative and summarizing all acute dollars
Acute Models – Model Decision Tree

- **Commercial**
 - **Non-Users**
 - **2< Age <64**
 - **Age < 64**

- **Medicare**
 - **Users**
 - **Not in union of costly diseases**
 - **Diagnosis Count > 100**
 - **Non-dialysis Non-cancer**
 - **Diagnosis Count < 100**
 - **Cancer**
 - **Dialysis**

Model Decision Tree

- **Babies (Age <2)**
- **Male Members – Spline Function (Age)**
- **Female Members – Spline Function (Age)**
- **Model**

Model

- **Neural Severity** = Nearest Neighbor Model (ALS, Other Neuron Dis., Brain Abscess, GuillBarre, Encephalitis…)

Linear Regression

- Age, Gender, Year 1 Cost, Rx Count, # co-morbidities, “Neural Severity “mini-model), interaction
<table>
<thead>
<tr>
<th>Cluster</th>
<th>Count</th>
<th>Actual</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Non-HMO Non-Users</td>
<td>279,859</td>
<td>423</td>
<td>444</td>
</tr>
<tr>
<td>Medicaid Non-Users</td>
<td>92,715</td>
<td>603</td>
<td>622</td>
</tr>
<tr>
<td>Baby & EC</td>
<td>13,351</td>
<td>1,981</td>
<td>2,001</td>
</tr>
<tr>
<td>Baby & No EC</td>
<td>16,992</td>
<td>1,165</td>
<td>1,073</td>
</tr>
<tr>
<td>DiagCnt=0 & Chronic$ <$120</td>
<td>27,592</td>
<td>822</td>
<td>778</td>
</tr>
<tr>
<td>DiagCnt=0 & Chronic$ ≥$120</td>
<td>26,387</td>
<td>2,003</td>
<td>1,906</td>
</tr>
<tr>
<td>Medicaid, No Drugs, EC, CM <4</td>
<td>26,829</td>
<td>1,143</td>
<td>1,148</td>
</tr>
<tr>
<td>Medicaid, No Drugs, EC, CM ≥4</td>
<td>21,190</td>
<td>3,171</td>
<td>3,012</td>
</tr>
<tr>
<td>Medicaid, No Drugs, No EC, CM <2</td>
<td>42,144</td>
<td>619</td>
<td>603</td>
</tr>
<tr>
<td>Medicaid, No Drugs, No EC, CM ≥2</td>
<td>50,401</td>
<td>1,121</td>
<td>1,125</td>
</tr>
<tr>
<td>Medicaid, Drugs, EC, CM <5</td>
<td>41,922</td>
<td>1,250</td>
<td>1,298</td>
</tr>
<tr>
<td>Medicaid, Drugs, EC, CM ≥5</td>
<td>69,957</td>
<td>3,235</td>
<td>3,305</td>
</tr>
<tr>
<td>Medicaid, Drugs, No EC, CM >3</td>
<td>32,185</td>
<td>651</td>
<td>668</td>
</tr>
<tr>
<td>Medicaid, Drugs, No EC, CM ≥3</td>
<td>47,935</td>
<td>1,206</td>
<td>1,221</td>
</tr>
<tr>
<td>Commercial, No Drugs, EC, CM <3</td>
<td>36,680</td>
<td>1,122</td>
<td>1,142</td>
</tr>
<tr>
<td>Commercial, No Drugs, EC, CM ≥3</td>
<td>48,501</td>
<td>2,849</td>
<td>2,851</td>
</tr>
<tr>
<td>Commercial, No Drugs, No EC, CM <2</td>
<td>65,151</td>
<td>769</td>
<td>768</td>
</tr>
<tr>
<td>Commercial, No Drugs, No EC, CM ≥2</td>
<td>45,410</td>
<td>1,263</td>
<td>1,195</td>
</tr>
<tr>
<td>Commercial, Drugs EC, CM <4</td>
<td>127,084</td>
<td>2,531</td>
<td>2,477</td>
</tr>
<tr>
<td>Commercial, Drugs EC, CM ≥4</td>
<td>147,105</td>
<td>5,515</td>
<td>5,486</td>
</tr>
<tr>
<td>Commercial, Drugs No EC, CM <3</td>
<td>148,110</td>
<td>1,483</td>
<td>1,513</td>
</tr>
<tr>
<td>Commercial, Drugs No EC, CM ≥3</td>
<td>71,026</td>
<td>2,590</td>
<td>2,594</td>
</tr>
</tbody>
</table>
Results
Validation set: Commercial / 893k members

- **LOS**
 - Frequency = 3.83%
 - Truncation = 60 days

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Correlation</th>
<th>R2</th>
<th>Sensitivity (10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>.281</td>
<td>.075</td>
<td>20.6%</td>
</tr>
<tr>
<td>Year1≥$500</td>
<td>.291</td>
<td>.081</td>
<td>21.8%</td>
</tr>
<tr>
<td>Year1≥$3,000</td>
<td>.320</td>
<td>.100</td>
<td>25.8%</td>
</tr>
</tbody>
</table>

- **Emergency Room Visits**
 - Frequency = 12%
 - Truncation = 15 visits

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Correlation</th>
<th>R2</th>
<th>Sensitivity (10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>.380</td>
<td>.144</td>
<td>28.7%</td>
</tr>
<tr>
<td>Year1≥$500</td>
<td>.400</td>
<td>.160</td>
<td>23.9%</td>
</tr>
<tr>
<td>Year1≥$3,000</td>
<td>.471</td>
<td>.221</td>
<td>29.9%</td>
</tr>
</tbody>
</table>
Results

Inpatient Admissions

<table>
<thead>
<tr>
<th>Predictive Model</th>
<th>Accurate Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top0.5%</td>
</tr>
<tr>
<td>Acute Cost (new)</td>
<td>39.1%</td>
</tr>
<tr>
<td>Acute Impact Index</td>
<td>38.7%</td>
</tr>
<tr>
<td>LOS</td>
<td>38.3%</td>
</tr>
<tr>
<td>Total Cost</td>
<td>35.8%</td>
</tr>
<tr>
<td>Emergency Room Visits</td>
<td>29.3%</td>
</tr>
<tr>
<td>Total Members</td>
<td>4,463</td>
</tr>
</tbody>
</table>

Green – the best result
Yellow – the second best result
Results

Emergency Room Visits

<table>
<thead>
<tr>
<th>Predictive Model</th>
<th>Accurate Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top 0.5%</td>
</tr>
<tr>
<td>Emergency Room Visits</td>
<td>65.1%</td>
</tr>
<tr>
<td>Acute Cost (new)</td>
<td>41.0%</td>
</tr>
<tr>
<td>Acute Impact Index</td>
<td>38.6%</td>
</tr>
<tr>
<td>LOS</td>
<td>37.0%</td>
</tr>
<tr>
<td>Total Cost</td>
<td>35.4%</td>
</tr>
</tbody>
</table>

| Total members | 4,463 | 8,925 | 17,852 |

Green – the best result
Yellow – the second best result
Results

Acute Cost

<table>
<thead>
<tr>
<th>Predictive Model</th>
<th>Avg Actual Acute Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top0.5%</td>
</tr>
<tr>
<td>Acute Cost (new)</td>
<td>$18,349</td>
</tr>
<tr>
<td>Total Cost</td>
<td>$16,466</td>
</tr>
<tr>
<td>Acute Impact Index</td>
<td>$16,391</td>
</tr>
<tr>
<td>LOS</td>
<td>$16,149</td>
</tr>
<tr>
<td>Emergency Room Visits</td>
<td>$10,524</td>
</tr>
</tbody>
</table>

| **Total members** | 4,463 | 8,925 | 17,852 |

Potential savings over

- **$4.2M**
- **$6.07M**
- **$4.7M**

Green – best result / Yellow – second best
Conclusions

- Problem
 - Identifying impactable members for Care Management

- Solution
 - Indexes very useful for identifying members in order to produce highest level of future savings & ROI
 - Chronic Impact Index
 - Acute Impact Index
 - New model for Prediction of Future Acute Cost

- Implemented
 - Into Care Management application
 - Detailed Member Profiles
 - Data mining integrated
Contact:
Ogi Asparouhov, Ph.D.
Senior Scientist, MEDai, Inc., Orlando, FL
OAsparouhov@medai.com

Diane Lee
Executive Vice-President, MEDai, Inc., Orlando, FL
DLee@medai.com

MEDai.com
1-800-446-3324

Copyright 2006, MEDai, Inc. All rights reserved. This document and all information and ideas relating to MEDai, Inc. contained within are the property of MEDai, are confidential, and constitute a trade secret of MEDai. Except as otherwise contemplated in the Request for Proposal, neither this document nor any part nor any information related to MEDai, Inc. contained herein may be copied, or otherwise reproduced in any form or disclosed or furnished to others without the prior written consent of the Company.