

Steve Wickstrom
Vice President, Research and Methods
OptumInsight
Steven.wickstrom@optum.com

OptumInsight Predictive Solutions: Overview

- OptumInsight is dedicated to delivering a comprehensive suite of quality predictive modeling tools to meet our customer needs
- Our longitudinal research data warehouse allows us to create a wide range of models
 - Access to over 50M individuals
 - Over 15 years of historical data available
 - Creation of prototypes simulating the customer experience
- Beyond our marketed capabilities we have the ability to create custom models or unique needs

Applications of Predictive Models

- Identify persons for inclusion in multi-disease case-management programs
- More effectively target single-disease management programs
- Identify persons who might benefit from educational/ self-care support
- Provide data on which to make financial decisions (e.g. budget allocations; demand forecasts)

Desired Properties of a Predictive Model

- Accuracy maximize predictive accuracy
- Transparency support users' ability to validate and explain predictions
- Interoperability integrate with other clinical and underwriting systems
- Flexibility offer users options that best meet operational needs
- Industry Acceptance evidence of its credibility in the marketplace

Predictive Model Essentials

- Determination of what you want to predict
 - Unplanned admits, readmissions, cost . . .
- The sources of data must be identified
 - Traditional: Professional, Facility, Medications
 - Other: Social Care, Mental Health, Consumer, Functional Status . . .
- The quality of the data must be assessed
 - Completeness: Is all of the data there
 - Accuracy: Do the codes make sense
- Condition identification methodology
 - Method of identifying conditions across the ICD-9-CM simplifying to a reasonable number of meaningful conditions
- Methodological approach
 - Approach to building predictors, assessing the outcome and iterating to an optimal solution

OptumInsight Solution Overview

- We have several types of models to meet a wide range of business applications
- Episode Risk Groups
- Pharmacy Risk Groups
- $Rx \rightarrow Dx$
- Impact Pro
- Natural History of Disease

OptumInsight Predictive Solutions: ERG

- Based on market leading episode methodology:
 ETG™
- Ten years: Initial release in 2001
- Morbidity based does not use service utilization in determination of risk
 - Risk markers are determined by the constellation of observed ETG's for each person
 - Leverages one year of service data
- Substantial improvement to the model in 2008 leveraging the ETG 7.0 risk adjustment methodology

OptumInsight Predictive Solutions: ERG

- Flexible models to meet customer data availability
 - MedRx→MedRx, Med→MedRx and Med→Med
- Has a wide range of models that can meet diverse customer needs:
 - Prospective (12-0-12)
 - Retrospective
 - Actuarial/Underwriting (12-6-12)
- Risk weights are recalibrated every 2-3 years to account for changes in health care utilization and spending patterns

OptumInsight Predictive Solutions: PRG

- Based on retail pharmacy claims
- Initial release in 2003

- Risk markers are determined by the constellation of observed DCC's for each person
- Leverages one year of service data
- Can run as a stand-alone or with ETG
- Allows customers that promptly acquire pharmacy data "speedy" access to risk

OptumInsight Predictive Solutions: PRG

- Flexible models to meet customer data availability
 - Rx→MedRx and Rx→RX
- Has a wide range of models that can meet diverse customer needs:
 - Prospective (12-0-12)
 - Actuarial/Underwriting (12-3-12)
- Risk weights are recalibrated every 2-3 years to account for changes in health care utilization and spending patterns

$Rx \rightarrow Dx$

Rx Dx uses prescribed drugs (along with age and gender) to assign the likelihood of an individual having one or more specific medical conditions

Generates probabilities at the individual/condition level

A probability assignment of 0.75 for hypertension suggests a 75% probability of that individual having a diagnosis of hypertension

Approach

Developed for conditions:

- Where an Rx

 Dx map could be constructed in a reliable and valid manner
- Where pharmaceutical agents are an important component of the treatment regimen
- With clinical & financial importance to potential users

Guided by empirical evidence and clinical expertise

Informed by the healthcare experience derived from a large population

Leverages Symmetry Drug Hierarchy - DCC

Example: Multiple Sclerosis

Description	DCC	N	MS %
Mitoxantrone HCI	16403	249	56%
Interferon beta-1b	34600	1530	95%
Interferon Beta-1a	34601	4108	93%
Glatiramer Acetate	34602	3848	95%
Riluzole	34604	201	3%
Interferon Beta-1a (Rebif)	34605	1993	97%
Natalizumab	34606	133	99%
Hemiacidrin	41303	29	38%
Repository Corticotropin Injection	49601	44	43%

How do you know if the model works?

Think of the model as a screening test Desirable features:

- Sensitivity: The ability of the model to identify most of all of the "cases"
- Positive Predictive Value: The degree to which the model indicates one has the condition, when they actually do have it
- There is a "balance" between Sensitivity and PPV
- Negative Predictive Value: Ability for the model to "not identify" negative cases – (NPV)

The "best" models are those that have a large differentiation between presence and absence of a drug

Example: Multiple Sclerosis

	Multiple Sclerosis		
	Yes	No	Total
Drug Y	10,277 (tp)	608 (fp)	10,885
Drug N	8,421 (fn)	9,980,694 (tn)	9,989,115
Total	18,698	9,981,302	10,000,000

PPV (TP)	94.41%	(10,277 / 10,885)
Se	54.96%	(10,277 / 18,698)
False+	608	
False-	8,421	

Logistic Regression Results: Diabetes Type I

	Neither Insulin or Supplies	Insulin Only	Supplies Only	Both Insulin & supplies
Age	47	47	47	47
Gender	F	F	F	F
Insulin	No	Yes	No	Yes
Supplies	No	No	Yes	Yes
Probability	1.8%	88.7%	64.9%	96.4%

Impact Pro Version 6

Impact Pro: Summary

- Uses ETG, pharmacy, utilization and laboratory results in assessment of risk of individuals
- Additionally provides a comprehensive clinical view
- Mature solution: Initial release in 2001
- Generates prospective risk assessment
- Integrated into a full service solution:
 - Processing Engine
 - Data Mart
 - Reporting System

Impact Pro: Model Summary

- Flexible models to meet customer data availability
 - MedRx→MedRx, Med→MedRx and Med→Med
- Has a wide range of models that can meet diverse customer needs:
 - Care Management (12-0-12)
 - Also leverages lab results if available
 - Actuarial/Underwriting (12-6-12)
 - Type of Service
 - Likelihood of an Inpatient Event
 - Probability of exceeding cost thresholds

Business Applications for Impact Pro

Medical Management

- Identify and manage the right patients, at the right time, with the right intervention
- Identify members at greatest risk for future healthcare problems
- Understand key clinical drivers of risk support steerage to appropriate programs
- Identify care opportunities members with gaps in care, complications and comorbidities

Underwriting

- Set the right premium rate, attract and retain good business, promote stability and profitability
- Historically, underwriters have used experience and other factors (age/gender, geographic and industry factors) to set healthcare premiums for individuals & groups
- Information on health risk for groups and individuals is used to enhance the underwriting process

<u>Impact Pro – Patient-Centered Profile</u>

Measuring Patient Risk

Four Steps to Prediction:

4. Risk

3. Weights

Step 1 – Data Inputs Used for Prediction

Medical and Pharmacy claims

- diagnosis codes (ICD9-CM)
- procedure codes (CPT, HCPCS)
- pharmacy (NDC codes)

Demographics (age and gender)

Clinical data- lab results

A 12-month "experience period" used for prediction Supports a range of input data scenarios

Step 2 – Markers of Risk

What is a Risk Marker?

- Characteristic that can be assigned to an individual and used to differentiate risk
- Goal: optimize use of data inputs to create markers that are:
 - -Predictive
 - Provide clinical insights
 - -"Multi-use" for different model outcomes
 - -Robust across populations and over time

Step 2 – Markers of Risk

How are ETGs used to create markers of risk?

- Identify unique clinical conditions
- Identify levels of severity for a condition
- Link services to conditions
- Provide a context for key events and services

Some markers go beyond ETG context

Result is a clinical risk profile for each individual – the individual markers that they trigger

Impact Pro – Types of Risk Markers

- Base and Severity
- Medical and Pharmacy Service
- Age/Gender (every one gets one of these)
- Lab Results
- Hierarchies are applied
- In total, there are approximately 900 risk markers available in Impact Pro

Impact Pro – Chronic Marker Families (examples)

		Ischemic		Asthma
		Heart	Heart	and
Impact Pro Marker Type	Diabetes	Disease	Failure	COPD
Base Marker	0.4538	0.6092	0.8239	0.1736
Added severity I	0.3517	0.1829	0.2214	0.1133
Added severity II	0.7361		0.479	0.3992
High episode clusters, recent 3 months	0.981	0.7711	1.4779	0.8124
High episode clusters, recent 12 months	0.7802	0.519	0.5236	0.7058
Moderate episode clusters, last 4-12 months	0.3443	0.1706	0.2176	0.2702
Emergency room visit, recent 3 months	0.724	0.3934	1.4796	0.1997
Acute care inpatient event, recent 3 months	2.5547	1.0414	3.301	1.5954
Acute care inpatient event, last 4-12 months	1.1661		0.7885	0.6185

All members identified with a condition receive the base marker (linked to episode triggering base) Some members receive added risk based on <u>severity</u> level of episode triggering the base marker Some members receive added risk based on acute and cluster service markers (hierarchical) Examples from Impact Pro – Version 6. CM 12-0-12 Future Risk Costs Model.

Impact Pro – Lab Result Markers

- Lab results can be used to supplement claims-based markers of risk
- Types of lab markers
- Presence of an extreme lab result, e.g.,
 - Alanine aminotransferase, extreme high value, recent
 - Cancer-125 (tumor marker), high/extreme value, recent
- Trend in lab results, e.g.,
 - C-reactive protein, significant increase in result
 - Albumin, significant decrease in result

Step 3 – Translating Markers to Risk Measures

- "Risk Weights" measure a marker's incremental contribution to risk
- Estimated from large population (about 14M for V6)
- Statistical approach depends on model
- Each marker has its own weight for each of the models supported by Impact Pro
- Model outcome being predicted, data inputs and timing impact weight assigned to a marker

Step 4 – Predicting Risk

	Member Markers of Risk	Relative Risk Score	Predicted Annual Cost
Base	Diabetes	0.4538	\$ 1,851
Severity	Diabetes, Added Severity II	0.7361	\$ 3,003
Service	Inpatient stay, diabetes within recent 3 months	2.5547	\$ 10,423
Base	Heart Failure	0.8239	\$ 3,362
Severity	Heart Failure, Added Severity I	0.2214	\$ 903
Service	High HF episode clusters, recent 3 months	1.4779	\$ 6,030
Demographic	Male, 55 – 64	0.6666	\$ 2,720
		6.9344	\$28,292

Example from Impact Pro – Version 6. CM 12-012 Future Risk Costs Model.

Patient-centered profile – Clinical Profile

Each member's Clinical Profile is based upon the latest evidence-based medicine and rules which you can tailor to specific populations

Predictive Modeling – Case Example

Differentiating Between Members

Patient A. Male, 52, Diabetic

Type 2 Diabetic, non-insulin dependent

Most recent HbA1c is 8.9; taken 2 months ago

Hospitalization 6 months ago for AMI

Multiple outpatient visits over last 12 months

Prior year's cost \$21,700

Patient B. Male, 60, Diabetic

Type 2 Diabetic, non-insulin dependent

Most recent HbA1c is 8.2; taken 9 months ago

Multiple outpatient visits over last 12 months

Prior year's cost \$25,400

Impact Pro Case Example

Looking Deeper

	Patient A	Patient B
Prior Cost	\$21,700	\$25,400
Predicted Risk (Cost)	9.0 (\$34,020)	4.0 (\$15,120)
Predicted Risk (Inpatient)	29.2% in next 3 months	6.9% in next 3 months
Disease Prevalence	Diabetes	Diabetes
Co-morbidity and Complication Markers	Coronary Artery Disease (CAD) Hyperlipidemia (Rx-based)	Hypertension
Management	Hospitalization – AMI Over 15 Outpatient Visits (Diabetes and CAD)	Over 15 Outpatient Visits – (Carpal Tunnel Syndrome)
EBM-compliance	Not refilling Beta-blockers for CAD	No eye exam for Diabetes No recent HbA1c Test
Care Team	Dr. Sugar – Diabetes Manager No Cardiac Care Manager	Dr. Pressure – Cardiac Care No Primary Care Physician
Care Alerts	Poor CAD/Diabetes Management Not Refilling Beta-blockers No Cardiac Care Manager	Lack of Eye Exam Lack of recent HBa1C Test No Primary Care Physician
Intervention Program	Diabetes, Level 4 (High)	Diabetes, Level 2 (Medium)

Impact Pro Performance

Impact Pro 6.0 – How Do we Compare to V5.0?

We have observed a substantial increase in model performance

Care Management Med-Rx \$250K

A/U Med-Rx \$250K

Impact Pro 6.0 – How Do we Compare to V5.0?

Impact Pro 6.0 has improved predictions for high risk patients Positive Predictive Value (PPV)

High Risk Individuals: Where did they go?

Another angle – for those we "miss" where do they end up? (Observed Cost Percentile – Selecting Patients in Top 0.5% based on Risk)

Deployment Options

ASP/BPO

- Client extracts data
- Ingenix cleans and warehouses data
- Ingenix periodically processes data through Impact Pro
- Ingenix delivers data output and business intelligence application to client (BPO)
- Ingenix hosts data and business intelligence application (ASP)
- Ingenix trains client on methodology, output, and production

Stand-alone Software

- Ingenix delivers Impact Pro processing and reporting application
- Supports industry standard technologies including SQL Server, Oracle, DB2, and Microsoft IIS
- Client extracts data and runs data periodically through Impact Pro
- Ingenix trains client on methodology, output, and production

Where are we going next?

- There is an increasing desire to expand the set of input data for improved predictions
 - Consumer data
 - Income, education, spending patterns . . .
 - How to use?
 - Accuracy at the patient level is an issue . . .
 - Health Risk Appraisals
 - Clinical data from the point of care
 - Electronic medical record information such as BMI, blood pressure . . .
 - Integration with administrative data is crucial
 - Not to mention compatibility with ICD-10-CM!

Where are we going next?

- Current efforts are focused on the collection clinical data
 - Issues include standarized coding
 - Timing of data
 - Integration of clinical data with administrative data
 - Developing analytics that can be applied at the point of care
 - Benchmarks
 - Predictive analytics
 - Quality of care
 - Presenting in a way that can be easily interpreted by clinical team members

Developing Capability Natural History of Disease

Natural History of Disease: Overview

- Define a disease protocol
- Find people who match the protocol
- Gather all their medical history
- Find control cohorts for each individual
- Find *their* history
- Compare clinical and financial attributes between the two groups in every conceivable way
- Do this in a minute or two...
- This is being driven by the OptumInsight Innovation Lab

"Big Data" Analysis (Today)

Mountains of Claims Data

Average disk seek time for big data in "traditional" databases (1-p0)*t0 + (1-p0-p1)*t1*n x 3

You

Side note...

What would Google's market capitalization be if its searches returned in days?

"Big Data" and NHD

- Massively parallel database (Netezza)
- Optimized Data Storage structures
- User Interface for mix and match attributes
 - Medical Codes
 - Temporal requirements
 - Member demographics
- SQL based Real Time cohort matching
- Signal Visualizations

Primary population anchor criteria

Required enrollment and interval of interest

Comparison requirement/anchor

Matched sets

Demographics

Then explore your population financially or clinically. Matched Pairs: 123,021 (246,042 total population)

Now what?

- Drug analysis
- Disease analysis
- Lab analysis
- Financial analysis

Financial comparison

Drug costs

52

Questions

Impact Pro Appendix Example of clinical specificity

Value of Models: Impact Pro - Diabetes

Random selection of 2M individuals from our research data warehouse

Identification all individuals with diabetes and asthma/COPD using Impact Pro markers

Computed the prevalence of each marker

Stratification of risk

Details on the top 10% for diabetes and top 9% for asthma/COPD
 Examination of the impact of markers

Chronic Condition Example: Diabetes - Markers

Diabetes Marker	Comments	Weight
Base marker	Diabetes ETG-severity level 1	0.4538
Added severity I	Diabetes ETG-severity level 2, 3	0.3517
Added severity II	Diabetes ETG-severity level 4	0.7361
High episode clusters, recent 3 months	5+ clusters	0.9810
High episode clusters, last 4-12 months	11+ clusters	0.7802
Moderate episode clusters, last 4-12 months	5-10 clusters	0.3443
Emergency room visit, recent 3 months		0.7240
Acute care inpatient event, recent 3 months		2.5547
Acute care inpatient event, last 4-12 months		1.1661
Diabetes, selected behavioral health agents	Must have base marker	0.4689
Diabetes, selected cardiovascular agents	Must have base marker	0.2950
Diabetes, diuretics agents	Must have base marker	0.7155
Rx only, non-insulin	No diabetes base marker	0.4655
Rx only, insulin	No diabetes base marker	1.0478

Example: Diabetes

Marker	Description	N	Prev	Avg. Risk
P_02_01_000	Diabetes	80,487	4.02%	3.221
P_02_01_001	Diabetes, added severity I	13,042	0.65%	4.669
P_02_01_002	Diabetes, added severity II	4,607	0.23%	7.086
P_02_01_000_CLQ4L	Diabetes, high episode clusters, recent 3 months	1,797	0.09%	8.078
P_02_01_000_CLSTH	Diabetes, high episode clusters, last 4-12 months	1,548	0.08%	8.959
P_02_01_000_CLSTL	Diabetes, mod. episode clusters, last 4-12 months	11,832	0.59%	4.731
P_02_01_000_E03	Diabetes, ER visit, recent 3 months	523	0.03%	4.984
P_02_01_000_I03	Diabetes, acute care inpt event, recent 3 months	308	0.02%	11.242
P_02_01_000_l12	Diabetes, acute care inpt event, last 4-12 months	760	0.04%	7.893
P_02_01_DBH_01	Diabetes, selected behavioral health agents	7,596	0.38%	4.157
P_02_01_DCV_01	Diabetes, selected cardiovascular agents	23,724	1.19%	3.476
P_02_01_DDI_01	Diabetes, diuretics agents	99	0.00%	4.916
P_02_13_000	Diabetes, Rx treatment-only, non-insulin	6,634	0.33%	2.185
P_02_14_000	Diabetes, Rx treatment-only, insulin	730	0.04%	3.138

Example: Diabetes – Top 10%

Marker	Description	N	Pct-1	Pct-2
P_02_01_000	Diabetes	8,002	100%	9.9%
P_02_01_001	Diabetes, added severity I	4,283	53.5%	32.8%
P_02_01_002	Diabetes, added severity II	2,824	35.3%	61%
P_02_01_000_CLQ4L	Diabetes, high episode clusters, recent 3 months	1,797	18.5%	82.4%
P_02_01_000_CLSTH	Diabetes, high episode clusters, last 4-12 months	1,548	15.8%	81.6%
P_02_01_000_CLSTL	Diabetes, mod. episode clusters, last 4-12 months	4,609	57.6%	39.0%
P_02_01_000_E03	Diabetes, ER visit, recent 3 months	151	1.9%	28.9%
P_02_01_000_l03	Diabetes, acute care Inpt event, recent 3 months	307	3.8%	99.7%
P_02_01_000_l12	Diabetes, acute care Inpt event, last 4-12 months	599	7.5%	78.8%
P_02_01_DBH_01	Diabetes, selected behavioral health agents	1,190	14.9%	15.7%
P_02_01_DCV_01	Diabetes, selected cardiovascular agents	3,071	38.4%	12.9%
P_02_01_DDI_01	Diabetes, diuretics agents	17	0.2%	17.2%

N: Number of individuals in top 10% of diabetics with this marker

Pct-1: Percent of top 10% of diabetics with this marker

Pct-2: For marker, the percent triggered in top 10%(e.g. 4,282/13,402 = 32.8%)

Value of Models: Summary

Nearly 90% of the individual in the top 10% has severity level I or II markers triggered

Severity level I triggered:

- 53.5% of the top 10% had this marker triggered
- 32.8% of the individuals with severity I triggered were in the top 10%

Severity level II triggered:

- 35.3% of the top 10% had this marker triggered
- 61.0% of the individuals with severity I triggered were in the top 10%

Value of Models: Summary

- 82% of the individuals with a high number of diabetes clusters in the last 3 months were in the top 10%
- 82% of the individuals with a high number of diabetes clusters in the first 9 months were in the top 10%
- Nearly all of the individuals with an Inpatient event in the last 3 months were in the top 10%
- 79% of the individuals with an Inpatient event in the first 9 months were in the top 10%

